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Research Methodology

Demographics

Position

Role

Location

Industry

Based on 750 qualified respondents.

Research Methodology
Focus. This report is designed for the business or 
technical manager who oversees a BI environment 
and wishes to learn the best practices and pitfalls of 
implementing a predictive analytics capability. While it 
discusses some technical issues, it is designed to educate 
business managers about how to drive greater value 
from their existing investments in data warehousing and 
information delivery systems.

Methodology. The research for this report is based on 
a survey that TDWI conducted in August of 2006, as 
well as interviews with BI and analytics practitioners, 
consultants, and solution providers. To conduct the 
survey, TDWI sent e-mail messages to IT professionals in 
TDWI’s and 1105 Media’s databases. (TDWI is a business 
unit of 1105 Media.) A total of 888 people responded to 
the survey, including 55 people whose responses we did 
not count since they work for a BI vendor in a sales or 
marketing capacity, or are professors or students. Thus, 
our analysis was based on responses from 833 people. Of 
this group, 168 had either partially or fully implemented 
a predictive analytics solution. Most of our survey analysis 
is based on the answers provided by these 168 respondents. 
Percentages may not always add up to 100% due to 
rounding or questions that allow respondents to select 
more than one answer.

Respondent Profile. A majority of the 833 qualified 
survey respondents (61%) are corporate IT professionals 
who serve as mid-level managers in the United States and 
who work for large organizations. (See charts.) 

Company Profile. A majority (58%) work in groups 
that support the entire enterprise, while 20% support a 
business unit, and 16% support multiple departments. 
The industries with the highest percentage are consulting 
and professional services (13%), financial services 
(12%), software/internet (9%), and insurance (8%.) 
Respondents work for companies of various sizes. One-
fifth of respondents (21%) hail from companies with less 
than $100 million in revenue a year, while another 26% 
of respondents come from companies that earn less than 
$1 billion, while 15% come from companies with annual 
revenues of between $1 billion and $5 billion.
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What Is Predictive Analytics? 
Consider the power of predictive analytics: 

• A Canadian bank uses predictive analytics to increase campaign response rates by 600%, 
cut customer acquisition costs in half, and boost campaign ROI by 100%. 

• A large state university predicts whether a student will choose to enroll by applying 
predictive models to applicant data and admissions history. 

• A research group at a leading hospital combined predictive and text analytics to improve its 
ability to classify and treat pediatric brain tumors.

• An airline increased revenue and customer satisfaction by better estimating the number of 
passengers who won’t show up for a flight. This reduces the number of overbooked flights 
that require re-accommodating passengers as well as the number of empty seats.

As these examples attest, predictive analytics can yield a substantial ROI. Predictive analytics 
can help companies optimize existing processes, better understand customer behavior, identify 
unexpected opportunities, and anticipate problems before they happen. Almost all of TDWI’s 
Leadership Award1 winners in the past six years have applied predictive analytics in some form or 
another to achieve breakthrough business results. 

High Value, Low Penetration. With such stellar credentials, the perplexing thing about predictive 
analytics is why so many organizations have yet to employ it. According to our research, only 21% 
of organizations have “fully” or “partially” implemented predictive analytics, while 19% have a 
project “under development” and a whopping 61% are still “exploring” the issue or have “no plans.” 
(See Figure 1.) 

Status of Predictive Analytics

Figure 1. Predictive analytics is still in an early-adopter phase. Based on 833 respondents to a TDWI survey 
conducted August 2006.

Predictive analytics is also an arcane set of techniques and technologies that bewilder many business 
and IT managers. It stirs together statistics, advanced mathematics, and artificial intelligence and 
adds a heavy dose of data management to create a potent brew that many would rather not drink! 
They don’t know if predictive analytics is a legitimate business endeavor or an ivory tower science 
experiment run wild. 

 1For many years, TDWI recognized the top overall applicant to its Best Practices Awards program with the TDWI 
Leadership Award for excellence in data warehousing and business intelligence. For more information on this program,  
visit www.tdwi.org/Education and click on Best Practices.
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Where Do You Start? But once managers overcome their initial trepidation, they encounter another 
obstacle: how to apply predictive analytics optimally in their company. Most have only a vague 
notion about the business areas or applications that can benefit from predictive analytics. Second, 
most don’t know how to get started: whom to hire, how to organize the project, or how to architect 
the environment.

Definitions
Before we address those questions, it’s important to define what predictive analytics is and is not. 
Predictive analytics is a set of business intelligence (BI) technologies that uncovers relationships and 
patterns within large volumes of data that can be used to predict behavior and events.2 Unlike other 
BI technologies, predictive analytics is forward-looking, using past events to anticipate the future. 
(See Figure 2.)

Applications. Predictive analytics can identify the customers most likely to churn next month or 
to respond to next week’s direct mail piece. It can also anticipate when factory floor machines are 
likely to break down or figure out which customers are likely to default on a bank loan. Today, 
marketing is the biggest user of predictive analytics with cross-selling, campaign management, 
customer acquisition, and budgeting and forecasting models top of the list, followed by attrition  
and loyalty applications. (See Figure 3.)

The Spectrum of BI Technologies

Figure 2. Among business intelligence disciplines, prediction provides the most business value but is also the most 
complex. Each discipline builds on the one below it—these are additive, not exclusive, in practice

 2 TDWI defines business intelligence as the tools, technologies, and processes required to turn data into information and 
information into knowledge and plans that optimize business actions. In short, business intelligence makes the businesses 
run more intelligently. It encompasses data integration, data warehousing, and reporting and analysis tools. Colloquially, 
most people use the term “BI tools” to refer to reporting and OLAP tools, not the full spectrum of BI capabilities.

What Is Predictive Analytics?
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Applications for Predictive Analytics

Figure 3. Based on 167 respondents who have implemented predictive analytics. Respondents could select multiple 
answers.

Versus BI Tools. In contrast, other BI technologies—such as query and reporting tools, online 
analytical processing (OLAP), dashboards, and scorecards—examine what happened in the 
past. They are deductive in nature—that is, business users must have some sense of the patterns 
and relationships that exist within the data based on their personal experience. They use query, 
reporting, and OLAP tools to explore the data and validate their hypotheses. Dashboards and 
scorecards take deductive reasoning a step further: they present users with a de facto set of 
hypotheses in the form of metrics and KPIs that users examine on a regular basis. 

Predictive analytics works the opposite way: it is inductive. It doesn’t presume anything about the 
data. Rather, predictive analytics lets data lead the way. Predictive analytics employs statistics, 
machine learning, neural computing, robotics, computational mathematics, and artificial 
intelligence techniques to explore all the data, instead of a narrow subset of it, to ferret out 
meaningful relationships and patterns. Predictive analytics is like an “intelligent” robot that 
rummages through all your data until it finds something interesting to show you. 

No Silver Bullet. However, it’s important to note that predictive analytics is not a silver bullet. 
Practitioners have learned that most of the “intelligence” in these so-called decision automation 
systems comes from humans who have a deep understanding of the business and know where 
to point the tools, how to prepare the data, and how to interpret the results. Creating predictive 
models requires hard work, and the results are not guaranteed to provide any business value. For 
example, a model may predict that 75% of potential buyers of a new product are male, but if 75% 
of your existing customers are male, then this prediction doesn’t help the business. A marketing 
program targeting male shoppers will not yield any additional value or lift over a more generalized 
marketing program.

More Than Statistics. It’s also important to note that predictive analytics is more than statistics. 
Some even call it statistics on steroids. Linear and logistic regressions—classic statistical 

Predictive analytics lets 
data lead the way.

Predictive analytics is 
statistics on steroids.
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techniques—are still the workhorse of predictive models today, and nearly all analytical modelers 
use descriptive statistics (e.g., mean, mode, median, standard deviation, histograms) to understand 
the nature of the data they want to analyze. 

However, advances in computer processing power and database technology have made it possible 
to employ a broader class of predictive techniques, such as decision trees, neural networks, genetic 
algorithms, support vector machines, and other mathematical algorithms. These new techniques 
take advantage of increased computing horsepower to perform complex calculations that often 
require multiple passes through the data. They are designed to run against large volumes of data 
with lots of variables (i.e., fields or columns.) They also are equipped to handle “noisy” data with 
various anomalies that may wreak havoc on traditional models. 

Terminology. Predictive analytics has been around for a long time but has been known by other 
names. For much of the past 10 years, most people in commercial industry have used the term 
“data mining” to describe the techniques and processes involved in creating predictive models. 
However, some software companies—in particular, OLAP vendors—began co-opting the term in 
the late 1990s, claiming their tools allow users to “mine” nuggets of valuable information within 
dimensional databases. To stay above the fray, academics and researchers have used the term 
“knowledge discovery.” 

Today, the term data mining has been watered down so much that vendors and consultants now 
embrace the term “predictive analytics” or “advanced analytics” or just “analytics” to describe 
the nature of the tools or services they offer. But even here the terminology can get fuzzy. Not all 
analytics are predictive. In fact, there are two major types of predictive analytics, (1) supervised 
learning and (2) unsupervised learning. 

Training Models. Supervised learning is the process of creating predictive models using a set of 
historical data that contains the results you are trying to predict. For example, if you want to predict 
which customers are likely to respond to a new direct mail campaign, you use the results of past 
campaigns to “train” a model to identify the characteristics of individuals who responded to that 
campaign. Supervised learning approaches include classification, regression, and time-series analysis. 
Classification techniques identify which group a new record belongs to (i.e., customer or event) 
based on its inherent characteristics. For example, classification is used to identify individuals on 
a mailing list that are likely to respond to an offer. Regression uses past values to predict future 
values and is used in forecasting and variance analysis. Time-series analysis is similar to regression 
analysis but understands the unique properties of time and calendars and is used to predict seasonal 
variances, among other things.

Unsupervised Learning. In contrast, unsupervised learning does not use previously known 
results to train its models. Rather, it uses descriptive statistics to examine the natural patterns 
and relationships that occur within the data and does not predict a target value. For example, 
unsupervised learning techniques can identify clusters or groups of similar records within a database 
(i.e., clustering) or relationships among values in a database (i.e., association.) Market basket 
analysis is a well-known example of an association technique, while customer segmentation is an 
example of a clustering technique. 

Whether the business uses supervised or unsupervised learning, the result is an analytic model. 
Analysts build models using a variety of techniques, some of which we have already mentioned: 
neural networks, decision trees, linear and logistic regression, naive Bayes, clustering, association, 

Predictive analytics 
versus data mining.

What Is Predictive Analytics?
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and so on. Each type of model can be implemented using a variety of algorithms with unique 
characteristics that are suited to different types of data and problems. Part of the skill in creating 
effective analytic models is knowing which models and algorithms to use. Fortunately, many 
leading analytic workbenches now automatically apply multiple models and algorithms to a problem 
to find the combination that works best. This advance alone has made it possible for non-specialists 
to create fairly effective analytical models using today’s workbenches. 

The Business Value of Predictive Analytics
Incremental Improvement. Although organizations occasionally make multi-million dollar 
discoveries using predictive analytics, these cases are the exception rather than the rule. 
Organizations that approach predictive analytics with a “strike-it-rich” mentality will likely become 
frustrated and give up before reaping any rewards. The reality is that predictive analytics provides 
incremental improvement to existing business processes, not million-dollar discoveries. 

“We achieve success in little percentages,” says a technical lead for a predictive analytics team in a 
major telecommunications firm. She convinced her company several years ago to begin building 
predictive models to identify customers who might cancel their wireless phone service. “Our models 
have contributed to lowering our churn rate, giving us a competitive advantage.” 

The company’s churn models expose insights about customer behavior that the business uses to 
improve marketing or re-engineer business processes. For example, salespeople use model output to 
make special offers to customers at risk of churning, and the managers to change licensing policies 
that may be affecting churn rates. 

Measuring Value
Our survey reinforces the business value of predictive analytics. Among respondents who have 
implemented predictive analytics, two-thirds (66%) say it provides “very high” or “high” business 
value. A quarter (27%) claim it provides moderate value and only 4% admit it provides “low” or 
“very low” value. (See Figure 4.)3

What Is the Business Value of Predictive Analytics to Your Organization?

Figure 4. Based on 166 respondents who have implemented predictive analytics.

Organizations with a 
“strike-it-rich” mentality 
are likely to get frustrated 
and give up. 

3Our respondents are generally individuals who create predictive models or manage analytic teams, so their perceptions of 
the business value they provide may be biased or differ from what business executives or managers might say. Nonetheless, I 
believe the responses generally align with my understanding of the success rates of predictive analytics in most organizations 
and other research conducted by vendors and research providers like International Data Corp. 
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How Do You Measure Success?

Figure 5. Based on 110 users who have implemented predictive analytics initiatives that offer “very high” or “high” 
value. Respondents could select multiple choices.

Respondents who selected “very high” or “high” in Figure 4 say they measure the success of their 
predictive analytics efforts with several criteria, starting with “meets business goals” (mentioned by 
57% of respondents.) Other success criteria include “model accuracy” (56%), “ROI” (40%), “lift” 
(35%), and “adoption rate by business users” (34%.) (See Figure 5.) 

Minimizing Churn. Brian Siegel is vice president of marketing analytics at TN Marketing, a firm 
that produces and distributes books and videos for its clients. He uses “lift” to measure the success 
of his predictive models. In a marketing campaign, lift measures the difference in customer response 
rates between customer lists created with and without a predictive model. As a one-man predictive 
analytics shop at his company, Siegel identifies people from client customer lists and outside lists 
who are likely to respond to a marketing campaign that his company conducts on behalf of a client. 

“We have some cases where we don’t need a whole lot of lift to achieve the ROI our president is 
looking for,” says Siegel, who further states that he is successful eight out of ten times in achieving 
the response rates established by the marketing team. When he’s not successful, Siegel says it’s 
usually because the data set is too small or responses too random to offer predictive value.

Siegel is quick to translate the lift of his campaigns to business value. “Our response modeling 
efforts are worth millions,” he says. “There have been a number of occasions where we would 
not have been able to acquire a new client and make the investment required to run a marketing 
campaign without the lift provided by our predictive models. So, I’m part of the sales process.” 

ROI. Interestingly, only a quarter of companies (24%) that have implemented predictive analytics 
have conducted a formal ROI study. This is about average for most BI projects based on past TDWI 
research. Companies with high-value analytic programs that have calculated ROI invest on average 
$1.36 million and receive a payback within 11.2 months. (These results are based on responses from 
only 37 survey respondents.) 

The survey also asked respondents how much their group invests annually to support its predictive 
analytics practice, including hardware, software, staff, and services. The median investment is 
$600,000 for all respondents that have implemented predictive analytics, but $1 million for 
respondents with programs delivering “very high” or “high” business value. These results suggest 
that you get what you pay for. (See Table 1.)

Siegel is successful 
eight out of ten times in 
achieving the desired 
response rates.

Companies with 
successful analytics 
programs invest $1 million 
annually.

The Business Value of Predictive Analytics
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Median Investments in Predictive Analytics

Table 1. Companies whose predictive analytics practice delivers “very high” or “high” business value (see Figure 
4) invest more money than companies whose programs deliver “moderate” or lower value. Based on 166 and 110 
respondents, respectively.

Drilling down more, the survey asked respondents to report their investments in predictive analytics 
by staff, software, hardware, and external services. Not surprisingly, staff costs consume the lion’s 
share of expenses, followed by software and hardware. Organizations spend only 10% of their total 
budget on external service providers, either consultants or service bureaus. (See Figure 6.) 

Median Breakdown of Expenses on Predictive Analytics

Figure 6. Median numbers are based on 166 respondents whose groups have implemented predictive analytics.

How Do You Deliver Predictive Analytics?
What Now? While some organizations have discovered the power of predictive analytics to reduce 
costs, increase revenues, and optimize business processes, the vast majority are still looking to get 
in the game. Today, most IT managers and some business managers understand the value that 
predictive analytics can bring, but most are perplexed about where to begin. 

“We are sitting on a mountain of gold but we’re not mining it as effectively as we could,” says 
Michael Masciandaro, director of business intelligence at Rohm & Haas, a global specialty materials 
manufacturer. “We say we do analytics, but it’s really just reporting and OLAP.” 

Rohm & Haas has hired consultants before to build pricing models that analyze and solve specific 
problems, but these models lose their usefulness once the consultants leave. Masciandaro says 
building an internal predictive analytics capability could yield tremendous insights and improve the 
profitability of key business areas, but he struggles to understand how to make this happen. 

“How do you implement advanced analytics so they are not a one-off project done by an outside 
consultancy?” says Masciandaro. “How do you bring this functionality in house and use it to deliver 
value every day? And where do you find people who can do this? There are not too many of them 
out there.” 

IN V ES T MEN T

All Companies $ 600,000

Companies with “high value programs” $1 million

“We are sitting on a 
mountain of gold but 
we’re not mining it as 
effectively as we could.” 
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The Process of Predictive Modeling
Methodologies. Although most experts agree that predictive analytics requires great skill—and 
some go so far as to suggest that there is an artistic and highly creative side to creating models—
most would never venture forth without a clear methodology to guide their work, whether explicit 
or implicit. In fact, process is so important in the predictive analytics community that in 1996 
several industry players created an industry standard methodology called the Cross Industry 
Standard Process for Data Mining (CRISP-DM.)4

CRISP-DM. Although only 15% of our survey respondents follow CRISP-DM, it embodies a 
common-sense approach that is mirrored in other methodologies. (See Figure 7.) “Many people, 
including myself, adhere to CRISP-DM without knowing it,” says Tom Breur, principal of XLNT 
Consulting in the Netherlands. Keith Higdon, vice president and practice leader for business 
intelligence at Sedgwick Claims Management Services, Inc. (CMS), adds, “CRISP-DM is a good 
place to start because it’s designed to be cross-industry. But then you have to think, ‘What makes 
my world unique?’” 

What Methodology Does Your Group Use?

Figure 7. Based on 167 respondents who have implemented predictive analytics.

Regardless of methodology, most processes for creating predictive models incorporate the following 
steps:

1. Project Definition: Define the business objectives and desired outcomes for the project and 
translate them into predictive analytic objectives and tasks. 

2. Exploration: Analyze source data to determine the most appropriate data and model 
building approach, and scope the effort.

3. Data Preparation: Select, extract, and transform data upon which to create models. 

4. Model Building: Create, test, and validate models, and evaluate whether they will meet 
project metrics and goals. 

5. Deployment: Apply model results to business decisions or processes. This ranges from 
sharing insights with business users to embedding models into applications to automate 
decisions and business processes.

6. Model Management: Manage models to improve performance (i.e., accuracy), control access, 
promote reuse, standardize toolsets, and minimize redundant activities. 

Most experts say the data preparation phase of creating predictive models is the most time-
consuming part of the process, and our survey data agrees. On average, preparing the data 

Most analytic modelers 
adhere to a methodology 
to ensure success.

4 The impetus for CRISP-DM came from NCR, Daimler Chrysler, and SPSS, who in 1997 formed an industry consortium 
and obtained funding from the European Commission to establish an industry-, tool-, and application-neutral standard 
process for data mining. Today, an open special interest group of more than 330 users, vendors, consultants, and researchers 
supports the CRISP-DM 2.0 initiative. See www.crisp-dm.org.

How Do You Deliver Predictive Analytics?
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occupies 25% of total project time. However, model creation, testing, and validation (23%) and 
data exploration (18%) are not far behind in the amount of project time they consume. This 
suggests that data preparation is no longer the obstacle it once was. However, if you combine data 
exploration and data preparation, then data-oriented tasks occupy 43% of the time spent creating 
analytic models, reinforcing the notion that data preparation consumes the lion’s share of an 
analytic modeler’s time. (See Figure 8.) 

Project Breakdown: Average Time Spent per Phase

Figure 8. Percentage of time groups spend on each phase in a predictive analytics project. Averages  
don’t equal 100% because respondents wrote a number for each phase. Based on 166 responses. 

1. Defining the Project
Although practitioners don’t spend much time defining business objectives, most agree that 
this phase is most critical to success. The purpose of defining project objectives is to discourage 
analytical fishing excursions where someone says, “Let’s run this data through some predictive 
algorithms to see what we get.” These projects are doomed to fail. 

Collaboration with the Business. Defining a project requires close interaction between the business 
and analytic modeler. “I work daily with our marketing people,” says a business analyst. To create a 
predictive model, this analyst meets with all relevant groups in the marketing department who will 
use or benefit from the model, such as campaign managers and direct mail specialists, to nail down 
objectives, timeframes, campaign schedules, customer lists, costs, processing schedules, how the 
model will be used, and expected returns. “There are a lot of logistics to discuss,” she says.

2. Exploring the Data 
The data exploration phase is straightforward. Modelers need to find good, clean sources of data 
since models are only as good as the data used to create them. Good sources of data have a sufficient 
number of records, history, and fields (i.e., variables) so there is a good chance there are patterns 
and relationships in the data that have significant business value. 

On average, groups pull data from 7.8 data sources to create predictive models. (“High value” 
predictive projects pull from 8.6 data sources on average.) However, a quarter of groups (24%) 
use just two sources, and 40% use fewer than five sources. Most organizations use a variety of 
different data types from which to build analytical models, most prominently transactions (86%), 
demographics (69%), and summarized data (68%). (See Figure 9.) 

Models are only as good 
as the data used to create 
them.
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Fortunately, most of this data is already stored in a data warehouse, minimizing the time required 
to search for data across multiple systems. According to survey respondents, 68% of the data used to 
create predictive models is already stored in a data warehouse. 

What Types of Data Do You Use to Create Predictive Models?

Figure 9. Based on 149 respondents that have implemented predictive analytics. 

TN Marketing’s Siegel uses an analytical tool and descriptive statistics to analyze the quality and 
predictive characteristics of various data sets, which he downloads directly from source systems to 
his desktop. The tools and techniques help him quickly identify 20 or so variables out of 200 that 
offer the best chance of delivering good performance (i.e., models that accurately predict values.) 
However, some data sets don’t generate accurate models because (1) there are too many missing 
values or errors, (2) the data is too random, or (3) the data doesn’t accurately reflect what it’s 
supposed to represent. 

Tools. Predictive modelers use a variety of tools to explore and analyze source data. Most analytical 
tools offer some exploratory capabilities. Basic tools enable analysts to compile descriptive statistics 
of various fields (e.g., min/max values and standard deviation), while others incorporate more 
powerful data profiling tools that analyze the characteristics of data fields and identify relationships 
between columns within a single table and across tables. Data profiling tools are common in data 
quality projects and are offered by most leading data quality and data integration vendors. A small 
percentage of analysts use advanced visualization tools that let users explore characteristics of source 
data or analyze model results visually. 

3. Preparing the Data
Cleaning and Transforming. Once analysts select and examine data, they need to transform it into 
a different format so it can be read by an analytical tool. Most analysts dread the data preparation 
phase, but understand how critical it is to their success. “I’m going through the painful process right 
now of scrubbing data for a project,” says Siegel. 

The tools help Siegel 
quickly identify the top 20 
or so variables out of 200 
or more.

Preparing data means 
cleaning and flattening it.
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Preparing data means first cleaning the data of any errors and then “flattening” it into a single table 
with dozens, if not hundreds, of columns. During this process, analysts often reconstitute fields, 
such as changing a salary field from a continuous variable (i.e., a numeric field with unlimited 
values) to a range field (i.e., a field divided into a fixed number of ranges, such as $0–$20,000, 
$20,001–$40,000, and so forth), a process known as “binning.” From there, analysts usually 
perform additional transformations to optimize the data for specific types of algorithms. For 
example, they may create an index from two fields using a simple calculation, or aggregate data in 
one or more fields, such as changing daily account balances to monthly account balances.

4. Building Predictive Models
Creating analytic models is both art and science. The basic process involves running one or more 
algorithms against a data set with known values for the dependent variable (i.e., what you are trying 
to predict.) Then, you split the data set in half and use one set to create a training model and the 
other set to test the training model. 

If you want to predict which customers will churn, you point your algorithm to a database of 
customers who have churned in the past 12 months to “train” the model. Then, run the resulting 
training model against the other part of the database to see how well it predicts which customers 
actually churned. Last, you need to validate the model in real life by testing it against live data. 

Iterative Process. As you can imagine, the process of training, testing, and validation is iterative. 
This is where the “art” of analytic modeling comes to the forefront. Most analysts identify and test 
many combinations of variables to see which have the most impact. Most start the process by using 
statistical and OLAP tools to identify significant trends in the data as well as previous analytical 
work done internally or by expert consultants. They also may interview business users close to the 
subject and rely on their own knowledge of the business to home in on the most important variables 
to include in the model. 

As a result, most analysts cull the list of variables from a couple hundred in an initial version to 
a couple dozen in the final model. Along the way, they test a variety of algorithms to see which 
works best on the training data set. They may find it necessary to add new data types or recombine 
existing fields in different ways to improve model accuracy. This iterative process makes creating 
models labor-intensive and time-consuming. 

Selecting Variables. Most analysts can create a good analytic model from scratch in about three 
weeks, depending on the scope of the problem and the availability and quality of data. Most start 
with a few hundred variables and end up with 20 to 30. This agrees with our survey results showing 
that a majority of groups (52%) create new models within “weeks” and another third (34%) create 
new models in one to three months. (See Figure 10.) Once a model is created, it takes about half 
the groups (49%) a matter of “hours” or “days” to revise an existing model for use in another 
application and takes another 30% “weeks” to revise a model. In addition, about half (47%) of 
models have a lifespan shorter than a year, and one-third (16%) exist for less than three months. 

Creating analytic models 
is both art and science. 

Creating models is very 
labor intensive and time-
consuming.
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How Long Does It Take to Create a New Model from Scratch?

Figure 10. Based on 163 respondents. 

How Many Variables Do You Use in Your Models?  

Figure 11. Based on 156 respondents. 

5. Deploying Analytical Models
Focus on Business Outcomes. A predictive model can be accurate but have no value. Predictive 
models can fail if either (1) business users ignore their results or (2) their predictions fail to produce 
a positive outcome for the business. The classic story about a grocery that discovered a strong 
correlation between sales of beer and diapers illustrates the latter situation. Simply identifying a 
relationship between beer and diaper sales doesn’t produce a valuable outcome. Business users must 
know what to do with the results, and their decision may or may not be favorable to the business. 

For example, the business could decide to display beer and diapers together at the front of the store 
to encourage more shoppers to purchase both items. Or they could decide to place the dual beer-
and-diaper display at the back of the store to force shoppers to move through more aisles to obtain 
these items. Or they could place beer and diapers at separate ends of the store to force shoppers to 
spend the maximum time possible walking through the aisles. Their decision, not the model results, 
ultimately determines business value. 

Identifying a data 
pattern doesn’t mean the 
business will know how 
to exploit it.
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Clever store managers can also use predictive models to help make this decision. By formulating a 
simple test with well-matched test and control groups, the manager can accurately anticipate the 
revenue impact of different beer and diaper placements using predictive modeling techniques. 

There are many ways to deploy a predictive model: 

A) Share the Model. You can share insights with business users via a paper report, a presentation, 
or a conversation. For example, Sedgwick CMS creates analytic models to enhance the claims 
management process and offer recommendations for business process improvements. “Most of our 
models are part of a consultative approach to minimize our client’s cost of risk,” says Higdon. 

B) Score the Model. Most organizations transform a predictive model into a SQL statement or 
programming code and then apply the statement or code to every single record in the company’s 
database pertaining to the subject area of the model. The result is a “score,” usually a value between 
0 and 1, that gets inserted into the database record as an additional field. A marketing manager, 
for example, might then select customers for a direct mail campaign who scored above 0.7 in a 
predictive model that measures customers’ propensity to purchase a specific product and respond to 
mail campaigns. Typically, companies score records on a monthly basis since the scoring process can 
consume a lot of time and processing power. 

A growing number of companies are starting to score models dynamically as records arrive. Some do 
this to cut the time and expense of processing large numbers of records in batch, while others find 
it can be highly profitable. For example, dynamic scoring enables an e-commerce outfit to display 
cross-sell offers to Web customers who just purchased or viewed a related item. Or a manufacturing 
company can use dynamic scoring to schedule maintenance for a factory floor machine that is about 
to break. 

Our survey shows that most organizations score models monthly or quarterly. However, 17% score 
models weekly, 13% score daily, and 19% score dynamically. (See Figure 12.)

How Frequently Do You Score Your Models? 

Figure 12. Based on 161 respondents who could select multiple answers. 

C) Embed the Model in a BI Report. Predictive models are understood by only a handful of people 
and dispersed to even fewer. It’s not that predictive models and scores exceed the comprehension 
of the average business user, but most users have never been exposed to these models and don’t 
know what to do with the results. Embedding these results into BI tools and reports is one way to 

Most organizations 
transform a predictive 
model into a SQL 
statement or  
programming code.

A growing number of 
companies are starting to 
score models dynamically 
as new records arrive. 
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overcome the hurdle of limited distribution. However, this may require modifying the model or 
report to make it easier for end users to interpret the results. 

Corporate Express, Inc., a business-to-business supplier of office and computer products, created 
a logistic regression model to predict customer churn using analytical capabilities built into the 
MicroStrategy 8 BI platform. The company runs the model weekly against its entire database of 
60,000 customers and delivers highly accurate results. However, the company had to figure out how 
to disseminate the results so salespeople could put the results to good use.

“We had to simplify the model to make it usable for the sales reps. These folks speak in terms 
of average order size, not R-squared values,” says Matt Schwartz, director of business analysis at 
Corporate Express. 

Tripwires. Rather than presenting salespeople the complete churn model for each customer, 
Corporate Express uses what it calls “tripwires” to highlight one variable in the model that might 
cause the customer to churn. For example, the report might highlight the model’s frequency variable 
(i.e., time between purchases) to show that a customer who has purchased toner every week for the 
past year has not made a purchase in the past month. “The tripwires give the sales reps something 
to discuss with customers,” says Schwartz. 

Schwartz feared the model might predict churn that the reps already knew about or overwhelm 
them with too many customers to contact. However, the weekly churn reports only highlight a 
handful of customers for each salesperson. “We’ve reduced our attrition and anecdotal evidence 
from our salespeople is all positive,” says Schwartz. 

Corporate Express shows it’s possible to distribute predictive models to a general population. The 
challenge is not the technology; it’s delivering predictive results in a form that users can understand 
and apply. Once organizations learn how to display predictive results, BI tools will be a good 
vehicle for distributing regression models to support forecasting and variance analysis applications, 
according to Gerry Miller, technology integration services principal at Deloitte Consulting LLP. 

D) Embed the Model in an Application. Another way to deploy a predictive model is to embed it into 
an operational application so it drives business actions automatically. To operationalize a predictive 
model, you need to embed the model results or scores into a set of rules. The rules usually create an 
“if, then, else” statement around a score. So, a Web recommendation engine might create the rule, 
“If a customer who just purchased this product exhibits a product affinity score of 0.8 or higher, 
then display pictures of the following items with the text, ‘You may also be interested in purchasing 
these other items:’” 

Some rules are based entirely on model scores, while others use scores as one element in a more 
complex rule that includes other variables, such as the time of day or month, type of customer, or 
type of product. For example, Sedgwick CMS uses complex rules composed of model scores and 
other variables to trigger referrals in its managed care division. It applies the rules on an ongoing 
basis to alert a claim handler when a claim possesses high-risk characteristics and should be treated 
differently, says Higdon.

The Holy Grail of operationalized predictive models is to create an automated environment in 
which models and scores are both dynamically updated and applied as new events occur. Experts 
refer to this state as a “lights out” decision-making environment or decision automation. This type 
of online processing is only suitable for well-known processes where the actions are highly scripted. 

“We had to simplify the 
model to make it usable 
for the sales reps.”

Corporate Express shows 
it’s possible to distribute 
predictive models to a 
general population.

The Holy Grail of 
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models is to create an 
automated environment.
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For example, a model might trigger the creation of new purchase orders when inventory falls below 
a certain threshold. Or, a model might detect fraudulent transactions and recommend actions based 
on the characteristics of the transaction. In reality, however, a human component will almost always 
exist in these “automated” decision-making environments. You need people who understand the 
model and the business and can validate the model results and recommended actions before they are 
executed. Without human intervention, companies risk making poor decisions based on faulty or 
spurious model results. 

Our survey shows use of all the approaches mentioned above. Two-thirds (65%) use predictive 
model insights to “guide decisions and plans.” A slight majority (52%) use models to “score 
records,” while 41% “import models into BI tools or reports,” 36% use scores to “create or augment 
rules,” and 33% “embed rules or models in applications to automate or optimize processes.” (See 
Figure 13.) 

What Does Your Group Do with the Models It Creates?

Figure 13. Based on 166 respondents selecting multiple answers. 

6. Managing Models
The last step in the predictive analytics process is to manage predictive models. Model management 
helps improve performance, control access, promote reuse, and minimize overhead. Currently, few 
organizations are concerned about model management. Most analytical teams are small and projects 
are handled by individual modelers, so there is little need for check in/check out and version 
control. “We don’t have a sophisticated way of keeping track of our models, although our analytical 
tools support model management,” says one practitioner. She says her four-person team, which 
generates about 30 models monthly, maintains analytical models in folders on the server. 

However, some expect an increase in the demand for model management to enable compliance 
and auditability with new standards and regulations. IT managers, in particular, want to impose 
greater structure on ad hoc analysis activities and multi-vendor analytical environments to minimize 
risks. Although model management can help teams of analytical modelers work more efficiently, 
few currently work within a rigorous project environment that adheres to industry standards for 
designing, creating, and publishing models. 

A majority of organizations (61%) still use an ad hoc or project-based approach to developing 
analytical models, according to our survey. Only 36% have either a program office or Center of 
Excellence to coordinate predictive modeling tasks. These results expose the relative immaturity of 
the practice of managing predictive analytics projects. (See Figure 14.) 

Demand for model 
management will 
increase to comply 
with new compliance 
regulations.
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Which Best Describes Your Group’s Approach to Model Management? 

Figure 14. Based on 164 respondents. 

Trends in Predictive Analytics
Analytical Immaturity. The BI community has seen a groundswell of interest in predictive analytics 
in the past two years as more companies seek to derive greater value from their data warehousing 
investments. However, few organizations have taken the plunge into predictive analytics, and for 
good reason. 

“A lot of companies want to do predictive analytics, but have yet to master basic reporting. Until 
they get there, investing in predictive analytics isn’t a good way to spend their money,” says Deloitte 
Consulting’s Miller.

Even organizations that have implemented predictive analytics have yet to harness the technology’s 
potential. Only about one-third of organizations (36%) say they have implemented predictive 
analytics in a mature fashion that uses well defined processes and measures of success and enables 
them to continuously evaluate and improve their modeling efforts. (See Figure 15.) 

Describe the Maturity of Predictive Analytics in Your Group

Figure 15. Based on 168 responses from groups that have implemented predictive analytics. 

Analytics Bottleneck
One reason for the overall lack of maturity in predictive analytics is that most companies haven’t 
done it for very long, at least among our survey base. Thirty-eight percent of organizations that have 
implemented predictive analytics have had the technology for two years or less, and 60% have had it 
in house less than four years. This is not much time to optimize or master a complex discipline! 

“A lot of companies want 
to do predictive analytics, 
but have yet to master 
basic reporting.”
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Barriers to Usage. A host of barriers can prevent organizations from venturing into the domain of 
predictive analytics or impede their growth. This “analytics bottleneck” arises from: 

1. Complexity. Developing sophisticated models has traditionally been a slow, iterative, and 
labor intensive process. 

2. Data. Most corporate data is full of errors and inconsistencies but most predictive models 
require clean, scrubbed, expertly formatted data to work. 

3. Processing Expense. Complex analytical queries and scoring processes can clog networks 
and bog down database performance, especially when performed on the desktop. 

4. Expertise. Qualified business analysts who can create sophisticated models are hard to find, 
expensive to pay, and difficult to retain.

5. Interoperability. The process of creating and deploying predictive models traditionally 
involves accessing or moving data and models among multiple machines, operating 
platforms, and applications, which requires interoperable software. 

6. Pricing. The price of most predictive analytic software and the hardware to run it on is 
beyond the reach of most midsize organizations or departments in large organizations. 

Fortunately, these barriers are beginning to fall, thanks to advances in software, computing, and 
database technology. 

Advances in Predictive Analytics Software 
Analytical software has taken much of the labor, time, and guesswork out of creating sophisticated 
analytical models. 

Integrated Analytic Workbenches. Leading vendors of analytical software have introduced in the 
past several years robust analytic workbenches that pre-integrate a number of functions and tasks 
that analytic modelers previously completed by hand or with different tools. Today, modelers can 
purchase a single analytic development environment that supports all six steps in the analytic 
development process. 

Market leaders SAS Institute and SPSS, Inc., offer the leading analytic workbenches today, followed 
by a host of second-tier vendors like Fair Isaac, Unica, Oracle, KXEN, Salford Systems, StatSoft, 
Insightful, Quadstone, Visual Numerics, and ThinkAnalytics. Most of the leading workbenches 
contain integrated tools that enable developers to create and manage project plans; explore and 
profile data sets; create, test, and validate models; and deploy and manage the models. 

Graphical Modeling. One major advancement offered by these workbenches is their ability to 
graphically model the flow of information and tasks required to create and score analytic models. 
In the past, modelers had to hand-code these steps into SQL or a scripting program. “I can’t 
develop models without the types of analytic tools available today since I don’t have programming 
skills,” says TN Marketing’s Siegel. “Today, I can create one hundred little steps in a graphical 
workflow, configure each step, and then hit a button to make the program run. The tool builds the 
programming logic behind the scenes so I don’t have to.” 

Today, you can purchase 
a single workbench that 
supports all six steps in 
the analytic development 
process. 
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Graphical Modeling

Figure 16. Predictive modelers create models using graphical workflows like this from  
SAS Institute’s Enterprise Miner. 

Automated Testing. Analytic workbenches have also improved developer productivity by 
automatically running multiple models and algorithms against a data set and measuring the impacts 
to see which provides the best performance. Previously, developers had to spend time testing each 
type of model and algorithm separately, effectively limiting the options they could test. 

Client/Server. Today’s analytic workbenches run in a client/server configuration rather than only on 
a desktop. A client/server architecture consolidates queries onto the server, reducing what analysts 
must download to their desktops to explore data and create analytic models. This reduces network 
traffic and redundant queries, which can bog down system performance. 

Text Analytics. Predictive text analytics enables organizations to explore the “unstructured” 
information in text in much the same way that predictive analytics explores tabular or “structured” 
data. Through text analytics, organizations can uncover hidden patterns, relationships, and trends 
in text. As a result, companies gain greater insight from articles, reports, surveys, call center notes, 
e-mail, chat sessions, and other types of text documents. Predictive text analytics also allows 
organizations to combine structured and unstructured information in the same models or retrieve 
documents related to specific KPIs. 

Analytic Data Marts. Along with the client/server workbench, most organizations implement an 
analytical data mart to house much of the data that analysts want to analyze. Most organizations 
refresh these analytical data marts on a monthly basis so modelers can rerun models on new data. 
Having a dedicated environment for predictive modelers further offloads query processing from a 
central data warehouse and operational systems, and improves performance across the systems. 

“Right now, our analysts each pull data sets from the data warehouse and create models on their 
desktops,” says Dave Donkin, group executive of information management at Absa Bank, a $60 
billion financial services company in Johannesburg, South Africa. “But we are moving to a group-
based model where we will pull down the data and dimensions the analysts need to a central server 

Most companies deploy 
analytical data marts that 
house most of the data 
that predictive modelers 
want to analyze.
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running a rich SAS Institute data environment. This will minimize the time they spend preparing 
the data and improve the performance of our data warehouse servers, which are running close to 
100% capacity.” 

Database-Embedded Analytics
A second major development that addresses key elements in the “analytical bottleneck” described 
above is the availability of relational databases that embed nearly all predictive modeling functions. 
Teradata, a division of NCR, has led the charge by embedding numerous functions into its 
relational database, most of which are accessible via SQL extensions or PMML. IBM has a rich 
analytic feature set within DB2, while Sybase, Oracle, and Microsoft are catching up. Some of the 
functions that Teradata bundles into its database enable business analysts to: 

• Profile and describe the data to reveal the quality and suitability of data. 

• Transform, reformat, or derive columns. 

• Reduce the amount of data required for analytic algorithms by applying correlation, 
covariance, and other algorithms. 

• Restructure tables, create data partitions, and generate samples.

• Visualize model results to enhance understanding. 

• Apply analytical algorithms, including linear and logistic regression, factor analysis, decision 
trees, and clustering algorithms.

• Store and score models directly inside the database.

It is not just the database vendors who recognize the value of in-database analysis. Some analytic 
workbenches, such as SPSS Clementine, automatically translate their graphical workflows into 
optimized SQL that goes to a relational database for execution, increasing scalability of common 
data mining tasks like scoring. When combined with client/server analytic workbenches, database-
embedded analytics allows organizations to distribute analytic processing across client, server, and 
database tiers to optimize performance, scalability, and usability. Many organizations plan to take 
advantage of this flexibility to improve performance in the near future. 

“Database-enabled analytics is one of the biggest enablers of predictive analytics in the past several 
years,” says consultant Breur. “No matter what tools you use, you still have to spend a lot of time 
working with the data. As data warehouses provide better support for the types of scrubbing and 
transformations required to create analytic models, the easier your life becomes.” 

According to our survey, most organizations plan to significantly increase the analytic processing 
within a data warehouse database in the next three years, particularly for model building and 
scoring, which show 88% climbs. The amount of data preparation done in databases will only climb 
36% in that time, but it will be done by almost two-thirds of all organizations (60%)—double the 
rate of companies planning to use the database to create or score analytical models. (See Figure 17.)

“Database-enabled 
analytics is one of the 
biggest enablers of 
predictive analytics in the 
past several years.” 
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Processing Plans for Data Preparation 

Figure 17. The three graphs are based on 162 responses from companies that have implemented predictive analytics. 

The growth in database processing comes at the expense of desktop processing. Most databases can 
run on high-performance servers that can substantially accelerate performance across large data sets. 
Surprisingly, the amount of processing performed on an analytical server or workbench will remain 
constant in the next three years. Nearly half (49%) of all companies will create models on analytic 
servers, which underscores the power and flexibility of the new analytic workbenches. 

Benefits of Relational Database Processing. If processing analytical functions occurs inside a 
database, users no longer have to extract, move, and load large datasets to a desktop or server 
machine. “It used to take us several days to score 50 million records, but now it takes half an hour,” 
says one practitioner whose data warehouse runs on a 48-node Teradata machine. Plus, leading 
relational databases offer greater reliability, scalability, and fault tolerance than desktop machines. 

Given the advent of powerful analytic workbenches, it’s surprising that about one-third of 
organizations plan to build analytical models in databases within three years. Most users I 
interviewed plan to continue creating models on server-based workbenches and then upload them to 
a database for scoring. However, it’s likely that many organizations plan to use relational databases 
to perform some steps within the model creation process, specifically model testing and verification. 
This way, they can move the models to the database for testing and verification rather than move 
the data to the desktop or server. 

“We leverage the data warehouse database when possible,” says one analytics manager. He says most 
analysts download a data sample to their desktop and then upload it to the data warehouse once 

“It used to take us several 
days to score 50 million 
records, but now it takes 
half an hour.”
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it’s completed. “Ultimately, however, everything will run in the data warehouse,” the manager says. 
Most experts believe it’s still best to create and analyze predictive models in analytic workbenches. 
Analytic servers provide a flexible environment designed for model building and analysis, unlike 
relational databases that are designed for transaction or query processing and require knowledge of 
SQL. Consequently, Teradata and IBM have recently de-emphasized the model building capabilities 
within their database management systems.

BI-Enabled Analytics and Applications
Although BI tools are not an ideal environment for creating sophisticated models with complex 
algorithms, users can import these types of models into a BI tool environment using PMML. In 
addition, some BI tools enable users to create regressions and cause/effect models, and display the 
results in easy-to-read reports. For example, MicroStrategy enables developers with some training 
to create linear and logistic models within its MicroStrategy 8 toolset and run reports for general 
business use that leverage the output of these models. (See Figure 18.) MicroStrategy also provides 
various charts and viewers that let users gauge and compare the accuracy of various models and 
apply the results.

Analytics Embedded in a Sales Report

Figure 18. This screenshot shows a MicroStrategy report that leverages various models (churn, risk, response 
propensity) to analyze customer behavior and recommend actions to salespeople. 

Other BI vendors that embed predictive models include Oracle’s Siebel Analytics reporting 
and analysis tool, Business Objects (which uses a separate set analyzer module for creating 
segmentations), and Advizor Solutions, a visualization vendor that embeds predictive algorithms 
from KXEN.
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Analytic Applications. There is sometimes a fine line between BI tools and analytic applications. 
In general, BI tools can create reports that support any department or domain. In contrast, 
analytic applications are “solutions” that generally consist of a set of predefined reports that enable 
business people to manage a variety of integrated processes within a single domain, such as sales, 
and sometimes in a single industry, such as sales for consumer packaged goods companies. A sales 
analytic application, for example, might provide a series of reports for users to track pipeline, sales 
rep performance, and customer activity. 

Many BI and application vendors, including most sponsors of this report, are delivering packaged 
analytic applications that embed predictive models. OutlookSoft, for example, has embedded root-
cause and variance analysis algorithms in its performance management application (e.g., integrated 
planning, budgeting, consolidation, dashboarding, and scorecarding) and now markets its predictive 
capabilities as a competitive differentiator. (See Figure 19.)

Analytics Embedded in a Performance Management Dashboard

Figure 19. The top-middle portion of this OutlookSoft screenshot shows the status of KPIs in the finance perspective, 
including actuals, budget, and predicted values. Highlighting a KPI (e.g., inventory turns) changes the table and 
gauge below to show the reasons (i.e., dimensional categories) and root causes (i.e., transactions) of the budget 
variance along with relevant text documents, all of which are generated using predictive algorithms. By moving the 
slider at left, a user can select new inputs to all predictor variables to create scenarios based on different risk levels. 

These analytic applications are easy to use because they don’t require users to create analytic models. 
An expert at the vendor company creates the models and the vendor embeds them into reports or 
code so results are generated automatically. Users only need to know how to interpret the results. 

However, this ease of use comes at a price. The embedded models must be generic enough to 
handle wide variations in customer data. But generic models are generally less accurate (and may 
be misleading) than models tuned to individual data sets. To get around this problem, packaged 
analytic vendors typically narrow the domain of each application so the models work on a limited 
set of data. Also, they pre-configure the models for each type of industry or domain in which the 

Embedded models must 
be generic enough to 
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application will be used. Third, they require users to tune the models by selecting parameters and 
configuring other controls to boost model accuracy. 

Support Vector Machines. Some vendors are experimenting with support vector machine 
algorithms, which seek to automatically select an optimal set of variables, transform data into the 
proper format, and reduce the size of the data to improve model-building performance. A primary 
goal of support vector machines is to create models that apply to a wide range of data beyond what 
was used to build the model. 

“The algorithms do a nice job of automated variable selection and model building,” says Herb 
Edelstein, president of Two Crows, Inc., a predictive analytics research and consulting firm. “Are 
they as good as hand-tuned models with appropriately transformed variables? No, but that’s not 
their goal. Their goal is to allow an unsophisticated user to easily come up with a reasonable answer. 
As a result, these analytical models are good for embedding within packaged analytic applications.”

Industry Standards for Interoperability
The bugaboo of predictive analytics is interoperability. A business analyst creates a predictive model 
using his tool of choice but cannot share it with other analysts who prefer to use other analytic 
workbenches. Or the business analyst wants to use the model to score customer records in a 
relational database but the modeling tool generates the model only in a language that is proprietary 
or is not supported by the organization’s database platform (e.g., Cobol, C, Java, SQL). 

PMML. In 2002, a loose affiliation of analytics vendors produced version 1.0 of the Predictive 
Model Markup Language (PMML) to overcome these problems. PMML is an XML schema for 
describing statistical and analytical models so they can be shared among applications. PMML 
describes the inputs to predictive models, the transformations to prepare data, and the parameters 
that define the models. Now produced by the Data Mining Group (www.dmg.org) with its 20 full 
and associate members (most of whom are analytics vendors), PMML is beginning to be used by a 
number of vendor and user organizations. Version 3.2 provides rich support of the most common 
algorithms and transformations involved in building predictive models.

“PMML is a good idea but it’s only good if a majority of vendors adhere to the same standard,” says 
Breur. “Right now, PMML has only halfway caught on.” 

The problem is that PMML currently translates only a limited set of predictive models. In addition, 
many vendors create proprietary extensions to PMML to support their unique features, diluting 
the advantages of using a standard. And some don’t support PMML across all their product lines. 
However, the DMG has done a good job of baking these proprietary extensions into the standard 
with each subsequent version, and PMML is gaining momentum, not losing it, like other standards. 

Interoperability Strategy. As a result, some vendors are making PMML a pivotal part of their 
analytics strategy. MicroStrategy, for example, is a “PMML consumer,” meaning it can store PMML 
models created by other analytic workbenches in its XML metadata repository and apply them 
to data in its reports. This will allow MicroStrategy customers to apply more complex predictive 
models to reports than they can build within MicroStrategy 8. Thus, PMML might be the 
vehicle that makes it possible to distribute the results of predictive analytics to more users. Report 
designers can embed the algorithms in reports and give users prompts to select data via one or more 
predefined queries, ensuring that users select appropriate data to run against the algorithm. 

PMML is gaining 
momentum as an  
industry standard.
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Most database vendors can consume PMML models, which makes it easy for developers to upload 
their models to a database for scoring. Without PMML, developers must code their models in 
SQL or some other language, then test and debug the code, and get permission from database 
administrators to upload and run it. Because it’s XML-based, PMML skirts many of these time-
consuming tasks and is more readily accepted by database administrators. 

Bridging the Analytics-IT Gulf. From a user perspective, PMML might help overcome the technical 
and cultural differences between predictive analytics teams and their IT counterparts. Although 
both groups are highly technical, they approach problems differently, which can lead to frustration 
and stalemate. 

“We spent 18 months creating, testing, and validating a new way of segmenting customers for our 
salespeople, but the project is stalled because we can’t get the IT department to incorporate it into 
the production data warehousing environment,” says a frustrated director of business analytics 
at a major pharmaceutical firm. “The amazing thing is that we provided them with the actual 
[Microsoft Visual Basic] code, which they’ll need to translate into SQL and ETL, but they still 
want to see requirement documents and functional specifications.” 

To break this logjam, the analytics team could use an analytic workbench that generates PMML 
code rather than Microsoft Visual Basic. They could then upload the resulting PMML code to the 
data warehouse database and work with the data warehousing team to schedule it and create the 
data sets and models needed to drive new sales reports. Meanwhile, the analytics team could export 
the model results to Microsoft Access or Excel to give BI developers a head start on creating more 
sophisticated reports. IT folks are generally receptive to industry standards and XML. Nonetheless, 
the analytics team will need to take its place in the queue for new projects, especially if the models 
require the data warehousing team to source new data.

The only other alternative is for the analytics team to create its own specialized data mart(s) 
and generate both models and reports. Of course, this approach brings considerable overhead 
and redundancy, and most analytics teams do not want to become report developers or report 
distributors. Despite these drawbacks, consultant Breur says, “I’ve seen such setups work well at 
some of my clients who have centralized departments.” 

Recommendations
Now that we’ve defined predictive analytics, assessed its business value, and stepped through key 
trends and processes, it’s important to provide specific recommendations to BI managers and 
business sponsors about how to implement a predictive analytics practice. This section offers five 
recommendations that synthesize best practices from various organizations that have implemented 
predictive analytics. 

1. Hire business-savvy analysts to create models
Every interviewee for this report said the key to implementing a successful predictive analytics 
practice is to hire analytic modelers with deep understanding of the business, its core processes, and 
the data that drives those processes. 

PMML might help 
overcome technical and 
cultural differences 
between predictive 
modelers and their  
IT counterparts.

Recommendations



28  TDWI RESEARCH

PREDIC T IVE ANALY T ICS

“Good analysts need strong knowledge of narrow business processes,” says Higdon of Sedgwick 
CMS. In claims processing, Higdon says good analysts “understand the business of claims handling; 
the interplay of variables across claim, claimant, and program characteristics; and what data they 
can and cannot rely on.” Only then, he adds, can analysts create “meaningful models” that result in 
positive business outcomes. 

Three Characteristics. Analytic modelers do not need deep statistical knowledge. “While a PhD 
in statistics can’t hurt, it isn’t the key,” says Breur. “Many modelers shoot themselves in the foot 
because they fall in love with their algorithms, not business outcomes.” Breur says effective analytic 
modelers exhibit three overriding characteristics: (1) they understand the business and can translate 
models into bottom-line outcomes, (2) they have a strong data background, and (3) they are diehard 
experimentalists. 

Breur, who has run analytics departments in large companies and is now an independent 
consultant, says he has had success hiring social scientists with quantitative backgrounds. He also 
says the best data miners have traditionally come from the United States, where most of the research 
and commercial implementations have taken place in the past. 

Hire from Within. Higdon says he largely grooms analysts internally after having little luck hiring 
people from the outside. He looks for people who’ve worked very closely with clients to create, 
deliver, and measure the impact of claims processing services and who have some computer 
experience, such as knowledge of Excel, Access, and an OLAP tool. “It’s difficult to find someone 
with industry knowledge, analytics skills, and the right software experience. Two out of the three 
is usually the best you can find.” On his current team, one member has experience in statistics, 
reporting, and data warehousing; two have backgrounds in Six Sigma; and four were junior data 
analysts and report developers who supported programs for large clients or partners. 

Apprenticeships. Higdon also says he “apprentices” new team members to ease them into the 
position. After a week of orientation and tool training, he assigns the new hire an experienced 
analyst as a mentor. New hires are given sample old projects to work on to learn the tool, the 
processes, and the data without any risk, and then they step up to small live projects. “The process 
takes a good three months; longer if they are right out of college or have minimal experience,” 
Higdon says.

Advances in analytical modeling tools during the past decade have made the field more accessible 
to individuals without deep statistical training. Several of the people I talked to were largely self-
taught. For example, one predictive modeler started out as a database administrator. After helping 
guide the implementation of the company’s enterprise data warehouse, the person proposed to 
management to “try a little data mining.” The person then purchased an analytics package, took 
a week of training, hired a consultant to get going, and demonstrated business returns. Today, the 
company has several analytical modelers that generate 30 models a month, saving the company 
millions of dollars in marketing and other costs. 

2. Nurture a rewarding environment to retain analytic modelers 
Since good analytic modelers are difficult to find, it’s imperative that managers create a challenging 
and rewarding environment. Of course, money is requisite. Top-flight analytic modelers often 
command higher salaries than classic business or data analysts. But good analytic modelers are 
motivated by things other than money and status, says Breur. 
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“You don’t attract analytic modelers with the same incentives as other people,” he says. “They 
want an opportunity to demonstrate their skills and learn new things so you have to increase their 
training budgets. I’ve struggled with human resources departments on this issue.” 

Absa Bank’s Donkin oversees a team of 30 analytic modelers. “We’ve built up a substantial team 
over the years, but we’ve battled to get them and it is challenging to retain them.” 

Offer New Challenges. Donkin says the best way to retain analysts is to provide a stimulating work 
environment and new opportunities to exercise their skills and demonstrate their talent. Donkin’s 
group provides information services to the entire company, and as a result, enables analysts to work 
on a variety of business problems, such as anti-money-laundering, lead generation, retention, credit 
scoring, fraud detection, cross-selling, operational research, and in the future, human resources, 
procurement, and other departments. “We can provide analysts with a wealth of opportunities and 
experience, which is one of the advantages of having a central IM group,” he says.

Career Paths. It’s also important to provide analytical modelers a clear career path to keep them 
from leaving for greener pastures. This rarely happens since analysts straddle the line between 
business and technology and are taken for granted by both sides. One strategy is to work with 
human resources to define two career paths for analytic specialists: (1) A technical track that 
eventually leads to the company’s research and development organization and cutting-edge work in 
the laboratory that creates next-generation products, and (2) a business track that moves a highly 
business-driven individual into a management position in the marketing department. The practice 
of marketing is increasingly adopting quantitative methods and these individuals will be in high 
demand in the future. 

3. Fold predictive analytics into the information management team 
The Inside Track. Traditionally, analytics teams are sequestered away in a back room somewhere 
and report to an ambitious department head (usually sales or marketing) who is seeking to ratchet 
up sales and get an edge on the competition. Unfortunately, this approach is not optimal, according 
to most practitioners. Analytic modelers are voracious consumers of data, and must establish strong 
alliances with the data warehousing team to maintain access to the data. 

“Since I work in the data warehousing department within IT, I go to my colleagues and say, ‘I 
need this,’ and I usually get it. I get to the head of the queue faster than someone from outside, 
which means I get more [storage] space, quicker access to data, and more privileges. As a result, my 
projects get pushed faster. Those are the unwritten rules,” says an analytical modeler.

She continues, “It is much harder for someone from marketing to get access to data. They have to 
fill in forms, justify their request, and other things.” Since modeling is an iterative process, modelers 
often find they need additional data in the middle of a project. But analytical modelers who don’t 
have close ties to the data team often must weigh the benefits of requesting new data against 
the delays in obtaining it. Not surprisingly, “it takes marketing much longer to create predictive 
models,” she says.

Options for Organizing the Analytics Team. Breur lists three ways companies can organize an 
analytics group: (1) embed analysts within a business department, (2) outsource the work, or (3) 
create a centralized group that serves the entire company. The last option is the only one that works, 
Breur says. “You really need a centralized department where specialists can rub elbows.” 
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This is exactly what Absa Bank has done. Its 30-person analytic intelligence team is one of five 
groups within the information management group that provides data warehousing, business 
intelligence, knowledge management, analytic services, and geographic information systems to the 
enterprise. Donkin runs the group and reports to the bank’s chief operating officer. “If we reported 
into finance or marketing, we’d have a bias towards those areas and overlook important initiatives. 
This way, we’re neutral and that is really important.” 

4. Leverage the data warehouse to prepare and score the data
Once you’ve hired the people and established the organization, the next important task is to provide 
a comprehensive solution for managing the data that the analytic modelers may want to use. While 
it is not necessary to build a data warehouse to support the analytic process, a data warehouse can 
make the process infinitely easier and faster. 

Saving Time. A data warehouse pulls together all relevant information about one or more domains 
(e.g., customers, products, suppliers) from multiple operational systems and then integrates and 
standardizes this information so it can be queried and analyzed. With a data warehouse, analysts 
only have to query one source instead of multiple sources to get the data they need to build models. 

In addition, a data warehouse loads, cleans, integrates, and formats data, sparing analytical modelers 
precious weeks and months spent on these data management tasks. As a result, a data warehouse can 
liberate analysts from data drudgery and greatly accelerate model creation. A data warehouse can 
also format the data for analytical modelers. For example, analysts typically need to flatten data into 
a single table with dozens or hundreds of columns; they often need to aggregate or dis-aggregate 
records depending on the needs of the algorithm or create new derived fields. Or they may need to 
import external or syndicated data into the data warehouse for analysis. All these steps can be done 
automatically as part of a data warehousing process. 

For example, every month, the data warehousing team at a major U.S. telecommunications 
company builds specialized tables or data marts within its enterprise data warehouse for the 
predictive modeling team. “Once you have your data at the beginning of the month, everything 
runs smoothly. You don’t have data quality problems or extra data preparation to do,” says the 
modeler. 

Analytic Data Marts. The specialized requirements of analytical modelers lead most companies 
to spawn a specialized data mart from the data warehouse. “The best way to go is to provide a 
dedicated data mart,” says Breur. In a Teradata-based data warehouse, an analytical data mart 
consists of a set of tables within the database. In most other environments, however, the data mart 
runs on a separate database, and sometimes on a different physical server. (See Figure 20.)

A data warehouse can 
liberate analysts from 
data drudgery and greatly 
accelerate the model 
building.
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Predictive Analytics Architecture

Figure 20. Most organizations create a separate analytic data mart from a central data warehouse to support the 
specialized queries and data processing required to build analytic models.

One sizable advantage in creating an analytical data mart is performance. Analytical modelers tend 
to submit complex, expensive queries against large data volumes. This can slow down queries for 
other users on a shared system, unless the analytical processing is limited to evening hours, which 
obviously isn’t convenient for analysts and is not conducive for the iterative analysis critical to 
creating good models. 

A client/server workbench running against a dedicated analytic data mart is the de facto 
architecture for supporting analytics projects. It provides a three-layer architecture that allocates 
different types of processing to the optimal layer, minimizes network traffic, and offloads queries 
from mission-critical analytical and operational systems, improving query performance for all.

5. Build awareness and confidence in the technology
One of the toughest challenges in implementing analytics is convincing the business that this 
mathematical wizardry actually works. “Building confidence is a big challenge,” says one analytics 
manager. “It takes awhile before business people become confident enough in the models to apply 
the results. The ultimate litmus test is when business people are willing to embed models within 
operational processes and systems. That’s when analytics goes mainstream in an organization.”

But getting to a lights-out analytical environment is not easy. Most organizations, even those 
with large analytic staffs like Absa Bank, still only apply analytics in pockets and have yet to truly 
operationalize the results. “Our business is increasingly becoming aware of what’s possible with 
analytics, but we still battle there,” says Donkin. 

How to Spread the Word. Donkin employs several techniques to increase awareness. His group has 
hired a cartoonist to create an eye-catching visual representation of what it knows about customers 
and its business significance. “A picture is worth a thousand words,” says Donkin. The group also 
sends business users notifications via Internet banner ads and other vehicles that contain interesting 
tidbits, such as “Did you know there are 20,000 checking account customers who have home 
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loans with another bank?” Says Donkin, “We want to stimulate thinking within the business and 
highlight the data we have.” 

Internal Sales People. Finally, Donkin’s group has a dozen business development managers whose 
sole job is to interface with the business and explain what is possible from a technical perspective. 
Each business development manager is assigned to one or more lines of business. They meet 
regularly with business representatives to inform them how to leverage data and resources to support 
business strategy, address problems and opportunities, and collect requirements. “They need to 
know the business and information management—it’s a tough job—but some now sit on the 
executive committee of the business unit they serve, which is a sign of respect and that the business 
is ready to leverage our resources fully,” says Donkin. 

Conclusion
Applying these five recommendations should enable any organization to implement predictive 
analytics with a good measure of success. While many people seem intimidated by predictive 
analytics because of its use of advanced mathematics and statistics, the technology and tools 
available today make it feasible for most organizations to reap value from predictive analytics. 

In many respects, predictive analytics is something we all do intuitively. Many of us have “gut 
feelings” about people or situations, and often these gut feelings turn out to be uncannily accurate. 
Malcolm Gladwell’s bestselling book Blink (Little Brown & Co., 2005) provides many examples 
of how our subconscious mind collects events, analyzes patterns, and predicts the future, often 
reflexively in ways that defy our conscious knowledge. 

For example, Vic Braden, one of the world’s top tennis coaches, has an uncanny ability to predict 
when a professional tennis player is about to double fault. Braden doesn’t know how he does this, 
but he wants to find out. He is currently videotaping tennis players and analyzing the film in super 
slow motion to see if he can identify the traits or characteristics of a double fault that his mind sees 
and processes subconsciously. 

It is not an exaggeration to say that Braden is an analytical modeler; he simply uses a different set 
of tools than do modelers who work on corporate data sets. In this context, predictive analytics is 
nothing more than “slowing down the tape” and dissecting events one at a time to find the key 
characteristics that have the most predictive power. Ironically, while predictive analytics leverages 
highly cerebral disciplines of statistics and mathematics, it enables our organizations to respond 
more intuitively and instinctively to customers and business events. In an odd way, predictive 
analytics reinstates “gut feel” in corporate decision making on an enterprise scale.

Predictive analytics 
reinstates “gut feel” 
into corporate decision 
making.
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