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What is Predictive Analytics??
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What is Predictive Analytics?

A set of Bl technologies that uncovers relationships
and patterns within large volumes of data that can be
used to predict behavior and events, or to optimize
activities.

Other Terms:

- Data mining

- Analytics

- Knowledge discovery
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Range of Bl technologies

High

Complexity

Low

Prediction

Monitoring

Analysis

Reporting

OLAP and
visualization tools

Dashboards,
Scorecards

Predictive
analytics

Query, reporting, &
search tools

High

Business Value
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Range of Analytic Users

o Statisticians

— Creates highly complex analytical models that
drive an organization’s core business

» Business/data analysts

— Creates simple to moderately complex models
for departmental usage

 Business users

— Run predefined models within applications and
view and act on reports that incorporate model
results
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Brian Siegel, VP of Marketing Analytics

Creates predictive models to improve response rates to
marketing campaigns

Identifies data sources
Cleans, standardizes, and formats data
Applies predictive algorithms
|dentifies the most predictive variables
Creates and tests the model

Delivers target list

“Our response modeling efforts are worth millions.
We would not be able to acquire a new client ..
Without the lift provide by our predictive models.”

-- Brian Siegel
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Status of Predictive Analytics

No plans 16%

I

Exploring 45%

Under development 19%

Partially implemented 15%

Fully implemented 6%

1

Based on 833 responses, Wayne Eckerson, “Predictive Analytics: Extending the Value
of Your DW Investment,” TDWI Research, 2007.
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Maturity

Describe the Maturity of Predictive Analytics in Your Group

Infant: Just starting out -h 5%

Child: Ad hoc projects _ 23%
Teenager: Established program and team _ 36%
Adult: Well-defined processes and measures _ 23%
of success

Sage: Continuously evaluate and improve 13%
models

Based on 166 responses, Wayne Eckerson, “Predictive Analytics: Extending the Value
of Your DW Investment,” TDWI Research, 2007.
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What is the Return?

* Average ROI — TDWI Survey
— Average investment: $1.36M

— Average payback: 11.2 mos
— Only 24% conducted ROI study

» |IDC Study in 2002: “Financial Impact of
Business Analytics”

— Average ROI — 431% with 1.65 year payback
— Median ROl — 112% with 1 year payback
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Business Challenges

* What applications is it suited for?

« What will it cost?

 How do | set up and organize a predictive
analytics practice?
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What Applications?

« Target applications have:
— Complex processes with multiple variables
— Lots of good historical data
« Examples:
— Retail: Design store layouts to optimize profits

— Trucking: Schedule deliveries to optimize truck
carrying capacity and on-time arrivals

— Banking: Set prices to optimize profits without
0sing customers

— Insurance: Identify fraudulent claims
— Higher Ed: Which admitted students will enroll




What Applications?

Cross-sell/upsell 47%
Campaign management 46%
Customer acquisition 41%
Budgeting and forecasting 41%
Attrition/churn/retention 40%
Fraud detection 32%
Promotions 31%
Pricing 30%
Demand planning 30%
Customer senvice 26%
Quality improvement 25%
Market Research (Suneys) 18%
Supply chain 17%
Other 12%

Based on 166 responses, Wayne Eckerson, “Predictive Analytics: Extending the Value
of Your DW Investment,” TDWI Research, 2007.
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What Does it Cost?

 Annual budget: Annual Budget Breakdown
— $600,000 median

— $1M for “high value” programs

Other, 5%
o Stalff:
| External
— Average: 6.5 services, 10%
— Median: 3.5

H 15%
ardware, 15% Staff. 50%

Software, 20%
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How to Set Up an Analytics Practice?

1. Hire business-savvy analysts to create models
2. Create a rewarding environment to retain them
3. Fold predictive analytics into a central team
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Technical Challenges

* “Analytics Bottleneck”
— Complexity
— Data volumes
— Processing expense
— Pricing
— Interoperability
— Dissemination
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Analytical Workbenches
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Integration with Bl Tools
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In-database Analytics

» Leading databases offer specialized functions
for creating and scoring analytical models:

— Profile data

— Transform, reformat, or derive columns.
— Restructure tables, create data partitions
— Generate samples

— Apply analytical algorithms

— Visualize model results

— Score models

— Store results
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Leverage the Data Warehouse

» Saves time
— Sourcing data from multiple locations
— Cleaning, transforming, and formatting data
* Don’t have to move data
— To prepare data, create models, score models
— Avoids clogging networks and slowing queries
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Outboard Analytic Data Marts
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Logical Analytical Data Marts ——
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Summary

* Predictive analytics is the next wave in Bl
— Intimidating jargon, but high business value
* Business strategy
— Find and retain analytical modelers
* Technical strategy
— Reduce analytical bottleneck
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Data Mining Functional Usage Spectrum

Ad hoc analysis

Operational Analysis

Executive, Front- line Data Analyst, Bl

employee, Application Sp(T_ciaI_ist, Business Analyst Statistician
provider Application
Developer

IBM InfoSphere Warehouse Coverage

Build & refresh mining models Work and collaborates with  Has working knowledge of PhD / highly skilled
using predefined applications. Business Analyst to build  data mining to create and data mining analyst-
Specific business skills. medium/ complex mining apply mo.dels for specific modeler.
models. business problems. .

- . Complex modeling and
Understands mining results in Deep business skills algorithms
terms of business problems. Build customized data P ' 9 '
- . mining applications. Data Exploration tools. Data Exploration tools.

Consumes mining results via
KPIs, dashboards, Bl Tocls. . . . Limited or basic SQL Limited or no SQL
Generic business skKills. <kills <kills

No SQL Skiils.
Strong Database, IT and
data manipulation skills.
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Operational Data Mining with InfoSphere Warehouse

1A

Data Mining Embedded into Applications and Processes

r
-

|
ey

SOA Processes

i,

I T T
Mining Visualizer

Bl Analytical Tools

T

i SQL Interface V

* Enterprise-Level Data Mining

* High-Speed, In-Database Scoring

InfoSphere Warehouse

Modeling R“g‘;gﬁ'g

In-Database
Data Mining

Scoring

Structured &
Unstructured
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Best Practices for Healthcare Analytics Evolution - Payers

LVqume]

Automated
Systems

Information
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First
Generation

Throughput Analytics

Non-specific

Data and Systems Integration
Organized

Personalized
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Best Practices for Healthcare Analytics Evolution - Providers

LVqume]

—-—-—
- o
-
-~
-~
~
~
S~
~

Automated
Systems "
Sl
S| T
©
[
Information | <
Correlation =
=
(@)
=}
o
First |E .
Generation {Complexny ]

1 Data and Systems Integration =
Organized Personalized

Non-specific




| IBM Software Group | Information Management software

Provider Effectiveness: Average Time in ESRD

= Business problem

— Healthcare payer wants to identify “best practices” of physicians who are
most successful in treating End Stage Renal Disease (ESRD)

= Analytical approach

— Focus on physicians treating patients who have reached end stage

- Length of time that a physician’s renal disease patients remain in end stage
before dying

- Demographic attributes of their patients (age, gender)

+ Clinical practice attributes (treatment protocols followed)

— Predict the average number of days that each physician’s renal-disease
patients remain in end stage
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Provider Predictive Analytics

ESRD Member Cluster Summary

Cluster Cluster Size Top Fields Field Field Significance
D Importance
12.25% of 1,746 Members DAYS IN 5850 1 » Much HIGHER than expected
DIABETES IND 2 POST-CKD DIABETES => is much
HIGH
1532 TOTAL DIAGNOSIS ALl 3 Much HIGHER than expected
TOTAL DAYS HEMATOP 4 Expected distribution
1 DAYS TO STAGE6 5 HIGHER than expected
TOTAL CLAIMS ALL 6 Much HIGHER than expected
PHOSPHATE IND 7 Y =>is much HIGH
B I
RSS! S EN-EI—— TOTAL DA AMIN 8 Expected distribution
DAYS IN STAGE6 9 Much HIGHER than expected
TOTAL DAYS PHOSPHATE 10 HIGHER than expected
7.33% of 1,746 Members TOTAL DIAGNOSIS ALL 1 Much HIGHER than expected
CONGESTIVE HEART FAILURE IND 2 POST-CKD
CONGTV_HEART_FAILURE =>is
much HIGH
4518 DAYS IN STAGE4 3 Expected distribution
CORNARY ATHERO IND 4 POST-CKD CORNARY_ATHERO =>
is much HIGH
2 TOTAL DAYS HEMATOP 5 Expected distribution
* ThisCluster ™ Other Clusters TOTAL PROVIDERS ALL 6 Much HIGHER than expected
cITY 7 Dallas => is AVERAGE
DAYS IN STAGES 8 HIGHER than expected
TOTAL PROVIDERS ESRD 9 Much HIGHER than expectsd
DIABETES IND 10 PRE-CKD DIABETES => is much
HIGH
Sep 3, 2008 1

= Top = Page up ¥ Page down X Bottom

12:46:47 PM
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Payer Predictive Analytics

4 4 @ End Stage Renal Disease Analysis by Region - Cognos... {3~ ) - deb v |- Page + (G Tools -

InfoSphere Warehouse

(Feepthisversion v | p i Gy Bh v | @ v [Eadd thisreport v i
End Stage Renal Disease (ESRD) Analysis

Region ESRD Member | AVG Cost per ESRD Total Cost for ESRD AVG Daysin
Count Member Members Stages
Middle 2% $45,037.84 $13,331,201,82 562
Atantic
Midwest 464 $61,021.65 §28,314,046.22 547
New England - 9 $73,904.29 §7,094,812.00 548
South 528 $73,599.30 $38,860,432.40 570
Southwest 318 §75,114.20 §23,386,315.48 432
West 44 §42,471.14 1,368,730, 14 409
Summary 1,746 $64,922.99 £113,355,538.06
ESRD Member Count Average ESRD (Stage 6) Member Treatment Cost
REGION Region
W Middle Atlantic W Middle Atlantic
B Midwest B Midwest
B new England B new England
" South " South
W Southwest W Southwest
B West B west
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Dictionary Definition in InfoSphere Warehouse

Dictionary:
Dictionary Entries: Entry details:
EEE: =]
O Fiter | Type filter text " Base form:
Base Form | Variants | unhappy
confusion “confused”, “confusing”, “confuse”
death "date of death”, "deceased”, "decease”, "dod” )
. g mowy_ o mow - m - Variants:
denial denials™, "denies”, "deny”, "denying
disagres “not agreeing”, “did not agree”, "doesn't agree... I £dd Yariant
disconnect “call disconnected”, "disconnected during trans...
escalate "speak to supervision”, "RQSTED SUPYT, “rgste... =nar
payment “protest chk”, "protested ck”, "unable to make ... aptg:ul;gies ﬂ
product "downgrade”, "downgraded”, "downgrades®, *... apologize
termination “term”, "termed”, “terminated”, “terminate”, "t... apologized
unhappy "upset”, "not happy”, "disagrees”, "unhappy”, ... apology
complain -
PR [N ——
4 I _>I_I

Automatically detected inflections for entry:
Unfavor'able sentimenfs detect belect a language for the inflection lookup:  |Endlish j
in the call center logs = [ infiectons <

anary “angrier”, “angriest” e
apologies “apology”

1

Pullee ...
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Importance of unstructured variables for the Decision Tree model

¥ Field Importance Chart

Target Field LAPSE IND FIAG
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Two most Important Variables
(From unstructured data)

3rd most Important Variable
(From structured data)

» Field Impordance and Correlation Tahle
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Decision Tree Gains Chart: With vs Without Text

Target Field LAPSE IND FLAG  TargetYalue IY vI

G ains

100 T

0

80 ; A Model using

et l3000CESES . variables from both

L sources (structured
8 ol....00%0fcases P and unstructured)
m ' .
: ! provides better ROI
g

50% of the records *

40 50 50 70 80 90 100
% Becords
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Questions?
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Contact Information
* If you have further questions or comments:

Wayne Eckerson, TDWI
weckerson@tdwi.org

Caryn Bloom, IBM
cbloom@us.ibm.com

TDWI RESEARCH




lll
1

il
]

| IBM Software Group | Information Management software

Please visit the following resources after the webinar for additional
information on this topic:

InfoSphere Warehouse Product Web Site:
www.ibm.com/software/data/infosphere/warehouse/

InfoSphere Warehouse Data Sheet:
http://download.boulder.ibm.com/ibmdl/pub/software/data/sw-
library/infosphere/datasheets/IMD10900-USEN-01.pdf

Embedded Analytics Solution Brochure:
ftp://ftp.software.ibm.com/software/data/db2/warehouse/IMF14002-USEN-01.pdf

Redbook - Dynamic Warehousing Data Mining Made Easy:
www.redbooks.ibm.com/abstracts/sq247418.html

Technical Whitepaper - Data Mining for Everyone:
http://www-01.ibm.com/software/sw-library/en_US/detail/Y815951M69194W67.html
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