Using Predictions to Power the Business

Wayne Eckerson Director of Research and Services, TDWI February 18, 2009

Wayne Eckerson Director, TDWI Research

Caryn A. Bloom Data Mining Specialist, IBM

Agenda

- Understanding Predictive Analytics
- Trends
- Business Challenges
- Technical Challenges
- Q&A

What is Predictive Analytics?

A set of BI technologies that uncovers relationships and patterns within large volumes of data that can be used to predict behavior and events, or to optimize activities.

Other Terms:

- Data mining
- Analytics
- Knowledge discovery

Range of Analytic Users

- Statisticians
 - Creates highly complex analytical models that drive an organization's core business
- Business/data analysts
 - Creates simple to moderately complex models for departmental usage
- Business users
 - Run predefined models within applications and view and act on reports that incorporate model results

Brian Siegel, VP of Marketing Analytics

Creates predictive models to improve response rates to marketing campaigns

- 1. Identifies data sources
- 2. Cleans, standardizes, and formats data
- 3. Applies predictive algorithms
- 4. Identifies the most predictive variables
- 5. Creates and tests the model
- 6. Delivers target list

"Our response modeling efforts are worth millions. We would not be able to acquire a new client .. Without the lift provide by our predictive models."

-- Brian Siegel

Status of Predictive Analytics

Based on 833 responses, Wayne Eckerson, "Predictive Analytics: Extending the Value of Your DW Investment," TDWI Research, 2007.

Maturity

Based on 166 responses, Wayne Eckerson, "Predictive Analytics: Extending the Value of Your DW Investment," TDWI Research, 2007.

What is the Return?

- Average ROI TDWI Survey
 - Average investment: \$1.36M
 - Average payback: 11.2 mos
 - Only 24% conducted ROI study
- IDC Study in 2002: "Financial Impact of Business Analytics"
 - Average ROI 431% with 1.65 year payback
 - Median ROI 112% with 1 year payback

Business Challenges

- What applications is it suited for?
- What will it cost?
- How do I set up and organize a predictive analytics practice?

What Applications?

- Target applications have:
 - Complex processes with multiple variables
 - Lots of good historical data
- Examples:
 - Retail: Design store layouts to optimize profits
 - Trucking: Schedule deliveries to optimize truck carrying capacity and on-time arrivals
 - Banking: Set prices to optimize profits without losing customers
 - Insurance: Identify fraudulent claims
 - Higher Ed: Which admitted students will enroll

What Applications?

Based on 166 responses, Wayne Eckerson, "Predictive Analytics: Extending the Value of Your DW Investment," TDWI Research, 2007.

What Does it Cost?

- Annual budget:
 - \$600,000 median
 - \$1M for "high value" programs
- Staff:
 - Average: 6.5
 - Median: 3.5

How to Set Up an Analytics Practice?

- 1. Hire business-savvy analysts to create models
- 2. Create a rewarding environment to retain them
- 3. Fold predictive analytics into a central team

Technical Challenges

- "Analytics Bottleneck"
 - Complexity
 - Data volumes
 - Processing expense
 - Pricing
 - Interoperability
 - Dissemination

Analytical Workbenches

- Graphical
- Integrated
- Automated
- Client/server

Integration with BI Tools

	Adobe Acrobat Standard - [Custor File Edit View Document Tools	comer Value Analysis.pdf]	
	Nice Edit View Decament Pools	Print 🔍 Email 🍈 Search 📗 📆 Create PDF 🔹 🔜 Review & Comment 👻 🔗 Secure 👻 🖉 Sign 👻	
2] =	Trai Solort Tout - 🐨 🗐 🕀		
(9)	📋 💷 📑 Options 🔻 🗙		P
Te .	🔁 Melanie Searles 🛛 💻		Ē
l Š	🔁 Iris Zeller	Customer Value Analysis	
Ļ	🔁 Evangeline Marrocci	Customer: Melania Saarles	
8	🔁 Arley Corbett	New York, NY discount on the next household purchase.	a
natur	💫 Susan Vansickle	Customer Value Predictors Statistics for Risk, Churn, Response and Lifetime Value	
ß	🔁 Melodi Kelner	Churp Bransarity 620/a	-
7	🔁 Jeanne Alczar	Market Responsiveness 0%	
ayers	🔁 Rolf Clemenson	Lifetime Value Score High	
Ľ	🔁 Reno Figarelle	Value Confidence 96% 63%	
8	🔁 Nokeo Britt	Customer Segment 4	
Pag	🔁 Stephan Patterson	37%	
	🔁 Carroll Falconer	Customer Status	
	🔁 Brooke Lohman 📍	Current Status Active 0%	
	🔁 Real Ernst	Acquisition Date 1/6/2004 Risk Confidence Churn Propensity Response Lifetime Value	-
	🔁 Siena Crick	Tenure 36 months Customer Buving Propensity	
	🔁 Elie Neumeyer		-
	🔀 Iris Neren	Customer Profile Hardware 0.1%	
	💫 Randie Kellaway	Age Range 41-60	
nents	💫 Miko Theod	Income Range > 80K Software 0.7%	
Com	💫 Jeanne Willman	Gender Female Marital Status Divorced Appliances 81.3%	
		Education High School Magazines 0.406	
		Magazines 0.470	
	T		-
		🛛 🖓 🔄 1 of 20 🔹 🔊 🖉	
#):	5tart 🛛 🥶 💽 🚱 😿 🗷 💽 (] 🛿 🌢 🗀 🗗 a. 🗐 s. 🔺 m. 🕂 Cooge 🔻 🗉 🔍 🔊 🙆 🌢 🏈 🖳 🗐 🖉 🗮 🖉 🖉 😓 💥 🌒	🛓 🛄 🚺 🛜 9:56 AM

In-database Analytics

- Leading databases offer specialized functions for creating and scoring analytical models:
 - Profile data
 - Transform, reformat, or derive columns.
 - Restructure tables, create data partitions
 - Generate samples
 - Apply analytical algorithms
 - Visualize model results
 - Score models
 - Store results

Leverage the Data Warehouse

- Saves time
 - Sourcing data from multiple locations
 - Cleaning, transforming, and formatting data
- Don't have to move data
 - To prepare data, create models, score models
 - Avoids clogging networks and slowing queries

Outboard Analytic Data Marts

Summary

- Predictive analytics is the next wave in BI
 - Intimidating jargon, but high business value
- Business strategy
 - Find and retain analytical modelers
- Technical strategy
 - Reduce analytical bottleneck

Using Predictions to Power the Business

Analytics Best Practices Team

Information Management software

© 2009 IBM Corporation

Data Mining Functional Usage Spectrum

Operational A	Analysis	Ad hoc analysis		
Executive, Front- line employee, Application provider	Data Analyst, Bl Specialist, Application Developer	Business Analyst	Statistician	
IBM	InfoSphere Wareho	buse Coverage		
Build & refresh mining models using predefined applications.	Work and collaborates with Business Analyst to build medium/ complex mining	Has working knowledge data mining to create a apply models for speci	of PhD / highly skilled nd data mining analyst- ific modeler.	
Specific business skills. Understands mining results in	models.	business problem	ns. Complex modeling and	
terms of business problems.	Build customized data mining applications.	Data Exploration too	ls. Data Exploration tools.	
KPIs, dashboards, BI Tools. No SQL Skills.	Generic business skills.	Limited or basic S0 skil	QL Limited or no SQL lls. skills.	
	Strong Database, IT and data manipulation skills.			
User-Driven Data Mining	IT-Driv Data Mi	en ning	Expert-Driven Data Mining	

Operational Data Mining with InfoSphere Warehouse

Best Practices for Healthcare Analytics Evolution - Payers

Best Practices for Healthcare Analytics Evolution - Providers

Provider Effectiveness: Average Time in ESRD

Business problem

 Healthcare payer wants to identify "best practices" of physicians who are most successful in treating End Stage Renal Disease (ESRD)

Analytical approach

- Focus on physicians treating patients who have reached end stage
 - Length of time that a physician's renal disease patients remain in end stage before dying
 - Demographic attributes of their patients (age, gender)
 - Clinical practice attributes (treatment protocols followed)
- Predict the average number of days that each physician's renal-disease patients remain in end stage

Provider Predictive Analytics

Cluster ID	Cluster Size	Top Fields	Field Importance	Field Significance	Significance
	12.25% of 1,746 Members	DAYS IN 5850	1	Much HIGHER than expected	
	1,532	DIABETES IND	2	POST-CKD DIABETES => is much HIGH	
		TOTAL DIAGNOSIS ALL	3	Much HIGHER than expected	
	214	TOTAL DAYS HEMATOP	4	Expected distribution	
1		DAYS TO STAGE6	5	HIGHER than expected	
		TOTAL CLAIMS ALL	6	Much HIGHER than expected	
		PHOSPHATE IND	7	Y => is much HIGH	
	This Cluster Other Clusters	TOTAL DAYS VITAMIN D	8	Expected distribution	
		DAYS IN STAGE6	9	Much HIGHER than expected	
		TOTAL DAYS PHOSPHATE	10	HIGHER than expected	
	7.33% of 1,746 Members	TOTAL DIAGNOSIS ALL	1	Much HIGHER than expected	
		CONGESTIVE HEART FAILURE IND	2	POST-CKD CONGTV_HEART_FAILURE => is much HIGH	
	1,618	DAYS IN STAGE4	3	Expected distribution	
		CORNARY ATHERO IND	4	POST-CKD CORNARY_ATHERO => is much HIGH	
2		TOTAL DAYS HEMATOP	5	Expected distribution	
	This Cluster Other Clusters	TOTAL PROVIDERS ALL	6	Much HIGHER than expected	
		CITY	7	Dallas => is AVERAGE	
		DAYS IN STAGES	8	HIGHER than expected	
		TOTAL PROVIDERS ESRD	9	Much HIGHER than expected	
		DIABETES IND	10	PRE-CKD DIABETES => is much HIGH	

Payer Predictive Analytics

End Stage Renal Disease (ESRD) Analysis

Region	ESRD Member Count	AVG Cost per ESRD Member	Total Cost for ESRD Members	AVG Days in Stage6
Middle Atlantic	296	\$45,037.84	\$13,331,201.82	562
Midwest	464	\$61,021.65	\$28,314,046.22	547
New England	96	\$73,904.29	\$7,094,812.00	548
South	528	\$73,599.30	\$38,860,432.40	570
Southwest	318	\$75,114.20	\$23,886,315.48	482
West	A 44	\$42,471.14	\$1,868,730.14	409
Summary	1,746	\$64,922.99	\$113,355,538.06	520

ESRD Member Count

Average ESRD (Stage 6) Member Treatment Cost

Dictionary Definition in InfoSphere Warehouse

)ictionary:			
Dictionary Entries:		Entry details:	(
1			
Filter Type filter te	ext	Base form:	0
Base Form	Variants	unhappy	
confusion death denial	"confused", "confusing", "confuse" "date of death", "deceased", "decease", "dod" "denials", "denies", "deny", "denying"	Variants:	
disagree disconnect	"rall disconnected", "disconnected during trans	Ad	ld Variant
escalate payment product termination	"speak to supervision", "RQSTED SUPV", "rqste "protest chk", "protested ck", "unable to make "downgrade", "downgraded", "downgrades", " "term", "termed", "terminated", "terminate", "t	angry apologies apologize	ove Variant
unhappy	"upset", "not happy", "disagrees", "unhappy",	apology complain	
		Automatically detected inflections for entry:	
Unfa	vorable sentiments detect	elect a language for the inflection lookup: English	
	in the call center logs	Term Inflections	
		apologies "apology"	
•			
50	mm	mann	\sim

Importance of unstructured variables for the Decision Tree model

Decision Tree Gains Chart: With vs Without Text

Questions?

Contact Information

• If you have further questions or comments:

Wayne Eckerson, TDWI weckerson@tdwi.org

Caryn Bloom, IBM cbloom@us.ibm.com

Please visit the following resources after the webinar for additional information on this topic:

InfoSphere Warehouse Product Web Site: www.ibm.com/software/data/infosphere/warehouse/

InfoSphere Warehouse Data Sheet:

http://download.boulder.ibm.com/ibmdl/pub/software/data/swlibrary/infosphere/datasheets/IMD10900-USEN-01.pdf

Embedded Analytics Solution Brochure:

ftp://ftp.software.ibm.com/software/data/db2/warehouse/IMF14002-USEN-01.pdf

Redbook - Dynamic Warehousing Data Mining Made Easy:

www.redbooks.ibm.com/abstracts/sg247418.html

Technical Whitepaper - Data Mining for Everyone:

http://www-01.ibm.com/software/sw-library/en_US/detail/Y815951M69194W67.html