

HADOOP AND THE BI ENVIRONMENT

TDWI Toronto Chapter March 1, 2012

An introduction to Hadoop, its components, and position in tomorrow's BI environments

HADOOP AND THE BI ENVIRONMENT

Abstract

Since its release into the open source community, Hadoop has been adopted rapidly to meet the challenges of analyzing big data environments, and case studies are plentiful. As Hadoop comes into the spotlight, more and more companies ask, "How does Hadoop fit into my BI strategy and architecture?" This course will introduce BI practitioners to Hadoop and its history. It examines Hadoop components and architecture, then explores strengths, weaknesses, and integration with current BI architectures.

Hadoop is no silver bullet for the many needs of business intelligence yet it is a new a powerful next step in data management and analysis. We will take a look at the new skills and training that are needed to work with Hadoop and other NoSQL databases in the open source environment. We'll close with some thoughts on what's next after Hadoop as well.

You Will Learn

- Introduction to Hadoop and its history
- Understand the components and architecture for implementing Hadoop
- Explore how best to integrate with your BI strategy

Geared Towards

- BI Directors and Managers
- Architects
- Developers
- Enthusiasts

Principal and Founder, Radiant Advisors JOHN O'BRIEN

With over 20 years of experience delivering value through data warehousing and BI programs, John O'Brien's unique perspective comes from the combination of his roles as a practitioner, consultant, and vendor in the BI industry. His knowledge in designing, building, and growing enterprise BI systems and teams brings real world insights to each role and phase within a BI program.

Today, through Radiant Advisors John provides research and advisory services that guide companies in meeting the demands of next generation information management, architecture, and emerging technologies.

Instructor 10+ years

As a recognized thought leader in BI, John has been publishing articles and presenting at conferences in North America and Europe for the past 10 years, including The Data Warehousing Institute where he has been invited as one of TDWI's Best Practices judges, Executive Summit presenters and expert panel participants. John has also developed and presented many of his own courses that now comprise the initial Radiant Advisors Learning Catalog.

Experienced

In 2005, John co-founded and became CTO of a data warehouse appliance company that raised \$43 million in several rounds of venture capital financing and has many global production customers. As CTO, John's primary role was to focus product development and BI market strategy.

Education

John has aB.S. in Mechanical Engineering from California State University with an emphasis in control systems and instrumentation and an Executive M.B.A. from University of Colorado. He is a Certified Business Intelligence Professional (CBIP) since 2005 with mastery levels in Leadership and Administration, Database Administration and Business Intelligence.

Introduction to Hadoop Components

HADOOP OVERVIEW

History of Hadoop BIG DATA CHALLENGE

- Big Data requires large amounts of servers and storage
- Scaling costs
 - Must leverage commodity hardware
 - More Cores & Spindles (Cheaper & Faster)
 - Density computers per rack (Power & Cooling)

History of Hadoop BIG DATA CHALLENGE

- Bandwidth bottleneck to move data
- Network can't move data to processors
- Massive amount of Nodes with processors and storage to parallelize
- New Paradigm needed

Move computations, not data

History of Hadoop WHAT IS HADOOP?

- The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using a simple programming model.
- It is designed to scale up from single servers to thousands of machines, each offering local computation and storage.
- Rather than rely on hardware to deliver high-availability, the library itself is designed to detect and handle failures at the application layer, so delivering a highly-availability service on top of a cluster of computers, each of which may be prone to failures.

Project subprojects:

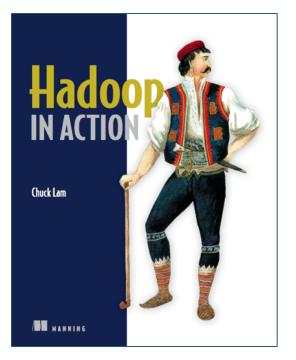
- Hadoop Common (Core)
- Hadoop Distributed File System (HDFS)
- Hadoop MapReduce

Related Apache projects:

- Avro
- Cassandra
- hukwa
- Hbase
- e Hive
- Mahout
- Pig
- ZooKeeper

History of Hadoop DEFINITIONS

WIKIPEDIA The Free Encyclopedia

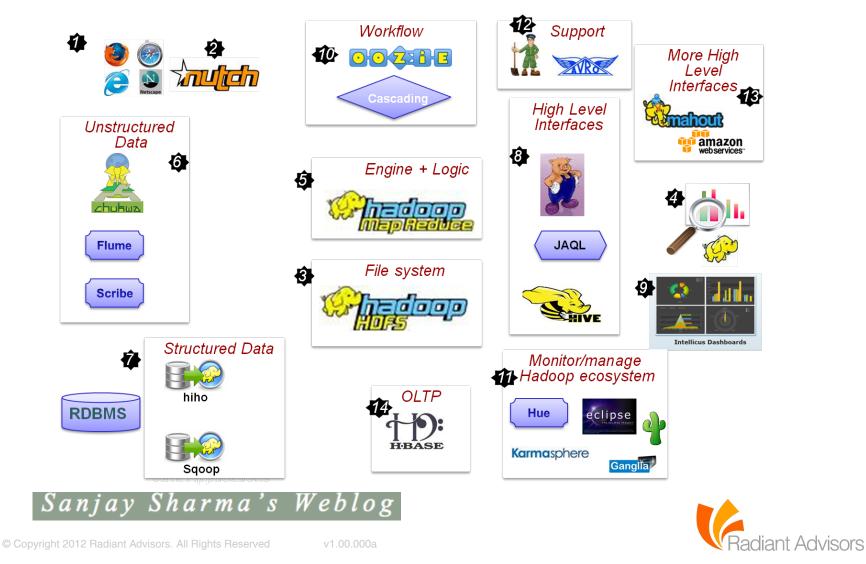

- Apache Hadoop is a software framework that supports data-intensive distributed applications under a free license.
- It enables applications to work with thousands of nodes and petabytes of data.
- Hadoop was inspired by Google's MapReduce and Google File System (GFS) papers.
- Hadoop is a top-level Apache project being built and used by a global community of contributors, written in the Java programming language.
- Yahoo! has been the largest contributor to the project, and uses Hadoop extensively across its businesses.
- It was originally developed to support distribution for the Nutch search engine project.

Hadoop was created by Doug cutting, who named it after his son's toy elephant...

History of Hadoop DEFINITIONS

"Hadoop is an open source framework for writing and running distributed applications that process large amounts of data." - *Chuck Lam, Hadoop in Action*

Key distinctions are:


- Accessible Hadoop runs on large clusters of commodity machines
- Robust Hadoop is architected with the assumption of frequent hardware malfunctions
- Scalable Hadoop scales linearly to handle larger data by adding more nodes to the cluster
- Simple Hadoop allows users to quickly write efficient parallel code

Hadoop cluster is a set of commodity machines networked together in one location.

© Copyright 2012 Radiant Advisors. All Rights Reserved

Extending Hadoop HADOOP ECOSYSTEM

History of Hadoop DOUG CUTTING

Apache Hadoop Co-founder

1980s

- Full Text Indexes, B-Tree
- Random access
- Seek time is wasted time
- Too slow when updates are frequent

2002

- Nutch
- Open Source
- · Web search engine
- Sort/Merge Optimizations
- Distributed solution

1*990*5

• Excite

2004

Google publishes

GFS & MapReduce

Provides automation

• In a few years, 20-40 nodes

Big batch processes

20005

- Lucene
- Open source
- Full-text search library
- Introduction to Apache

2006

- · Yahoo! hires Cutting
- Nutch becomes Hadoop
- Automates maintenance
- 2009 joined Cloudera

© Copyright 2012 Radiant Advisors. All Rights Reserved

v1.00.000a

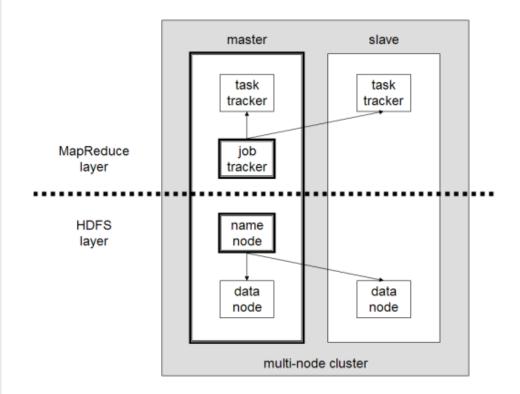
2009-10, became chairman of the Board of the Apache Software Foundation

History of Hadoop MOVING CODE NOT DATA

Accessing data with MapReduce Programs scaling the application Data stored in

Hadoop Distributed File System

© Copyright 2012 Radiant Advisors. All Rights Reserved


v1.00.000a

History of Hadoop HADOOP AT YAHOO!

		/			/
Initial versions of Hadoop components prototyped as part of Apache Lucene project	 Apache Hadoop launched by Yahoo! employees Yahoo! scales Hadoop to run on 600 server clusters, up from 20 server clusters Hadoop deployed to support science at Yahoo! Dramatically speeds innovation, from months to days 	 Science results improve Yahool Search and Advertising products Yahoo scales Hadoop to 1000 server clusters 	 Hadoop use evolves beyond science and reaches production across the network Search Advertising optimization Machine Learning Content feeds and optimization 	 Over a dozen clusters of up to 4000 servers each Released Yahoo! Distribution of Hadoop Hadoop adoption: Inventory management Ad delivery optimization Behavioral Targeting Data pipeline 	 Yahool continues to run the world's largest production Hadoop applications: Yahoo.com Today Module Mail Anti- Spam Advertising Data Systems Content consolidation Data analytics

Architecture Components MASTER / SLAVE ARCHITECTURE

Master / Slave Architecture

- NameNode
- DataNode
- Secondary NameNode
- JobTracker
- TaskTracker

Architecture Components NAMENODE

Most vital Hadoop daemon:

- Master of HDFS
- Directs slave DataNodes to perform
 low-level I/O taskes
- Memory and I/O intensive
- Does not perform as DataNode
- Does not perform as TaskTracker
- NameNode tells each client which DataNode each block resides in

BOOKKeeper of HDFS:

- Stores file metadata
- How files are broken down into file blocks
- Which nodes store which file blocks
- Overall health of the distributed filesystem

NameNode is the single point of failure of the Hadoop cluster

Architecture Components DATANODE

DataNode work:

- Each slave machine in cluster will host a DataNode daemon
- Reading and writing HDFS blocks to actual files on local filesystem
- Communicates with other
 DataNodes to replicate data blocks

communicate with NameNode:

- NameNode tells client which
 DataNode has blocks needed
- At initialization, each DataNode
 informs NameNode of its blocks
- DataNodes continually poll NameNode for instructions to create, move or delete local blocks

DataNodes inform NameNode of its local blocks "mapping"

Architecture Components SECONDARY NAMENODE (SNN)

Assistant daemon to NameNode:

- Each cluster has one SNN
- Monitors state of cluster HDFS
- No DataNode daemons on SNN
- No TaskTracker daemons on SNN

communicate with NameNode:

- Takes snapshots of HDFS metadata
- Snapshot intervals defined by cluster configuration
- Helps minimize downtime or loss of data

Secondary NameNode is not a backup or

failover for the NameNode

Architecture Components JOBTRACKER

Master/Slave compute Architecture:

- JobTracker is the master overseeing overall execution of MapReduce job
- Daemon between application and Hadoop
- Automatically relaunches the task if it fails
- Only one JobTracker per Hadoop cluster

JobTracker process:

- 1. Submit your code to cluster
- 2. Determines execution plan
- 3. Which files to process
- 4. Assigns nodes to different tasks
- 5. Monitors all tasks as they run

JObTracker is typically run on a server as a

master node of the cluster

Architecture Components TASKTRACKER

slave compute daemon:

- Executes individual tasks assigned by the JobTracker
- Single TaskTracker per slave node
- Each TaskTracker can spawn multiple JVMs to handle map or reduce tasks in parallel

communicates with JobTracker:

- JobTracker receives heartbeats
- JobTracker can resubmit task to other nodes in cluster

Each Slave nodes has a Single TaskTracker and DataNode daemon

Architecture Components ARCHITECTURE TOPOLOGY Backup Master NameNode Secondary NameNode Client < **JobTracker** DataNode DataNode DataNode DataNode Slave Slave Slave Slave TaskTracker TaskTracker **TaskTracker** TaskTracker ant Advisors © Copyright 2012 Radiant Advisors. All Rights Reserved

20

Architecture Components THREE OPERATING MODES

standalone Mode

- Default mode for Hadoop
- Assumes single machine
- Chooses conservative .
- Assumes minimal config .
- No Node communication •
- No HDFS .
- No Hadoop daemons
- MapReduce development ٠ and debugging

Pseudo-distributed Fully-distributed

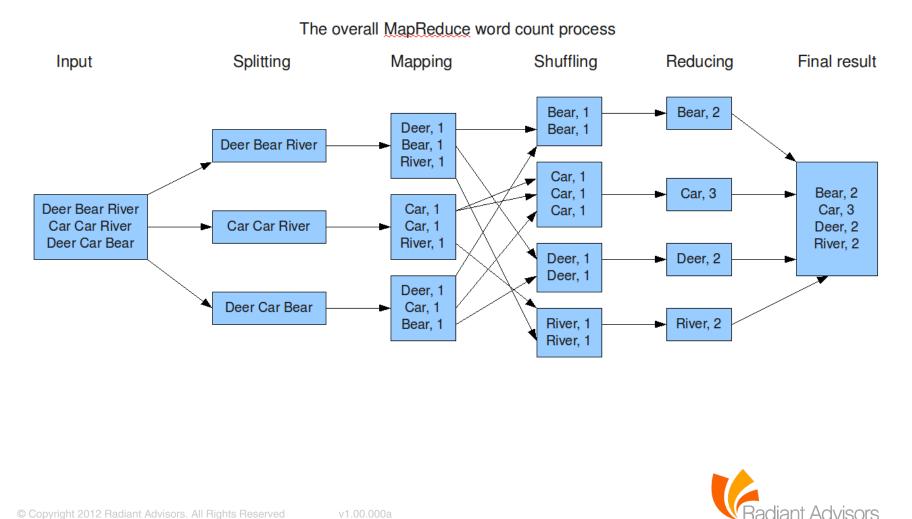
- "Cluster of One"
- All Hadoop daemons running
- Examines memory usage
- HDFS input/out issues •
- **Daemon** interactions •
- Further development and ٠ debugging mode

- Production mode
- Master node of cluster • hosts NameNode and **JobTracker**
- Backup node hosts Secondary NameNode
- Slave boxes running both DataNode and TaskTracker daemons

MapReduce Programming UNDERSTANDING MAPREDUCE

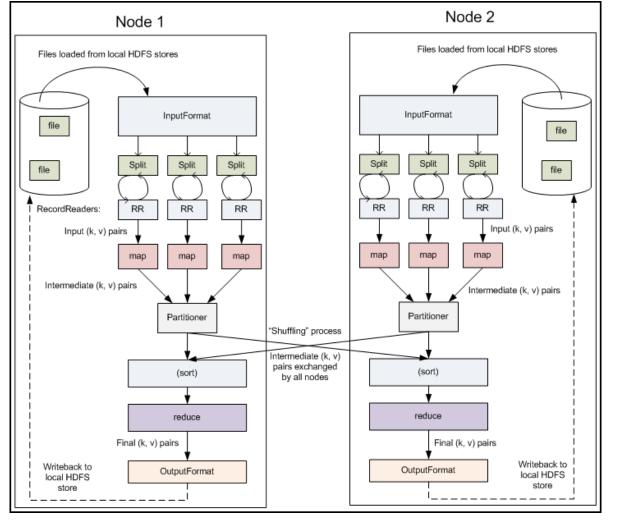
- MapReduce is a framework for processing huge datasets on certain kinds of distributable problems using a large number of computers (nodes)
- Collectively referred to as a cluster (if all nodes use the same hardware) or as a grid (if the nodes use different hardware)
- Computational processing can occur on data stored either in a filesystem (unstructured) or within a database (structured)

It takes some time to get used to ...



MapReduce Programming HADOOP KEY/VALUE PAIRS

- Fundamental data unit of Hadoop
- Instead of relational tables
- Stores full description in the data with its value
- Flexible to work with less structured data types



MapReduce Programming MAPREDUCE DATA FLOW

24

MapReduce Programming MAPREDUCE DATA FLOW

© Copyright 2012 Radiant Advisors. All Rights Reserved

MapReduce Programming MAP STEP

- The master node takes the input, partitions it up into smaller sub-problems, and distributes those to worker nodes.
- A worker node may do this again in turn, leading to a multi-level tree structure.
- The worker node processes that smaller problem, and passes the answer back to its master node.

MapReduce Programming REDUCE STEP

 The master node then takes the answers to all the sub-problems and combines them in some way to get the output – the answer to the problem it was originally trying to solve

Extending Hadoop PIG

Simplifies Hadoop Programming with a high-level data processing language

Two major components:

- 1. Pig Latin high level data processing language
- 2. A Compiler compiles to an evaluation mechanism, such as Hadoop
- Knowing how to write UDFs is a big part of learning to use Pig
- Pig can operate on data that is relational, nested, semistructured or unstructured
- The Pig interactive shell is known as Grunt

Extending Hadoop HIVE

"A SQL like data warehouse infrastructure with HiveQL" "Hive is a data warehousing package built on top of Hadoop"

Overview:

- Separates the user from the complexity of MapReduce
- Target user is the data analyst more comfortable with SQL for ad-hoc queries, summarization and data analysis
- Hive is a metastore for storing schema information

Features:

- Separates the user from the complexity of MapReduce
- Structured uses familiar concepts of tables, rows, columns and schema
- Partitions data with use of directory structures
- Connectivity with JDBC, Web GUI or Command Line Interface

Hive began at Facebook processing user and log data

Extending Hadoop HBASE

A distributed, column-oriented database using HDFS

overview:

- Targeted for random real-time read/write access of (fairly) structured data
- Designed to support large tables of billions of rows and millions of columns
- HDFS delivers fully distributed and highly available

Hbase is modeled after Google's Big Table

© Copyright 2012 Radiant Advisors. All Rights Reserved

Extending Hadoop OTHER HADOOP PROJECTS

Avro	data serialization	
Cassandra	multi-master database with no single point of failure	
ZooKeeper	high performance coordination services of distributed applications	
Mahout	scalable machine learning and data mining library	
Chukwa	data collection system for managing large distributed systems	

31

History of Hadoop CLOUDERA & MAPR

Cloudera Distribution Including Apache Hadoop

- Packages CDH ecosystem (Cloudera Distributed Hadoop)
- 100% Apache-licensed components
- Subscription offering
- Simplified installation and update
- Tested and compatible version
- Contributes to Apache Hadoop

Think of Red Hat for Linux

MapR Technologies Inc. Distribution

- May 2011- announced the availability of an alternate filesystem for Hadoop
- Replaced the HDFS file system with a full random-access read/write file system
- Advanced features like snaphots and mirrors
- Gets rid of the single point of failure issue of the default HDFS NameNode.

History of Hadoop SOME PRODUCTION INSTALLATIONS

- Yahoo! has dozens of 4,000 node clusters and hundreds of petabytes
- Cloudera has 1,000 node customers
- Facebook just moved 30PB cluster July, 2011

Typical Node has 4-8 ITB drives per CPU

(Facebook likes 12 drives)

33

© Copyright 2012 Radiant Advisors. All Rights Reserved

Introduction to Hadoop and NoSQL SUMMARY

"We don't have Hadoop because we have big data. We have big data because we have Hadoop."

Businesses view Hadoop and NoSQL as enabling technologies that will allow them to discover new opportunities and invent new business models

If you rely only on SQL in an organization, you may be missing opportunities for innovation

© Copyright 2012 Radiant Advisors. All Rights Reserved

Big Data and Hadoop Architectures in BI

BI ARCHITECTURE WITH HADOOP

© Copyright 2012 Radiant Advisors. All Rights Reserved

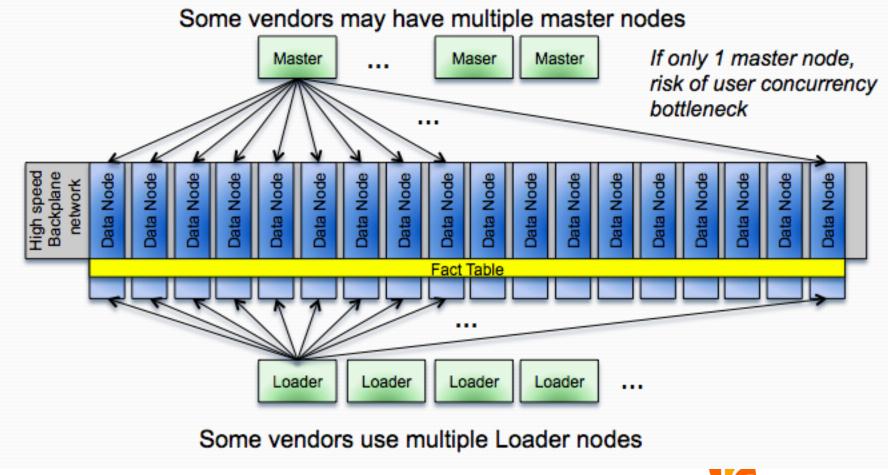
35

Big Data Architectures SCALE OUT ARCHITECTURE

- Predictable linear performance, cost and scalability
- Parallelism through massive number of node servers
- Independent disk access for each nodes improves performance

Big Data Architectures SCALE OUT ARCHITECTURE

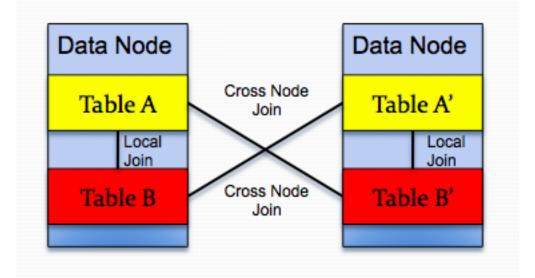
MPP scale-out:


- Shared Nothing architecture
- Each node has database engine
- Nodes communicate with each other to complete Map and Reduce functions
- Data distribute by column with value, hash or round-robin
- Data access in Master node
- Database includes SQL access

Hadoop Scale-out:

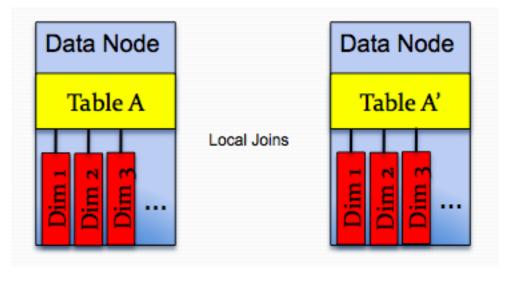
- Separate architecture for Distributed File System for loaders and Name node meta data
- Separate architecture for execution and accessing data
- Each data node communicates with other nodes
- Separate layers for SQL translation (PIG, Hive)

Big Data Architectures MPP ARCHITECTURE



© Copyright 2012 Radiant Advisors. All Rights Reserved

Big Data Architectures MPP COMMUNICATION


When each node contains a slice of the fact table and a slice of the dimension, cross node joins are required to complete all row joins in the tables

Big Data Architectures MPP BROADCASTING TECHNIQUE

Specifically for Star schemas, some MPP vendors broadcast (duplicate copy) the dimensions into each node to keep all joins local since Dimensions are much smaller by order of magnitude

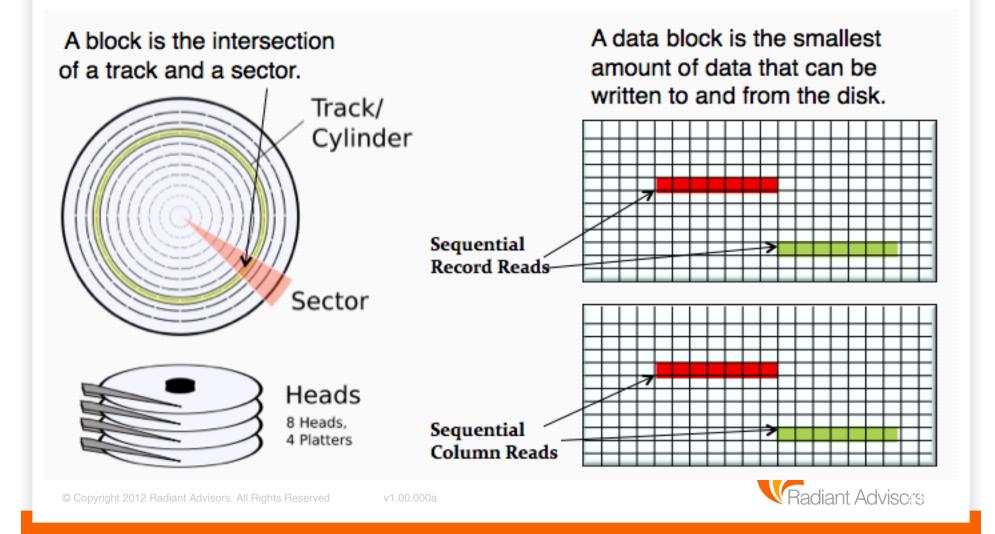
Big Data Architectures MPP USER DEFINED FUNCTIONS

- Most MPP databases are now MapReduce compatible
- UDFs allow the distributed database engines of MPP to execute User compiled code in the database at the node level for parallelism
 - C/C++, Perl, Python, Ruby, Java
- UDFs useful for complex big data algorithms that are not possible in SQL

v1.00.000a

Big Data Architectures APPLIANCES

- Hardware + Software = Tightly integrated
- Plug and Play implementations
- Low administration
- Little to no tuning
- Typically some form of MPP database
- Appliance at what level?
 - System Appliance vs. Component Appliance



Big Data Architectures COLUMNAR MPP

- Scale-out with RDBMS Structure
- Data written and stored by table column
- High compression rates from grouping data type in block
- Analytics is Read Mainly/Write Once

Most RDBMS offer Hybrid now

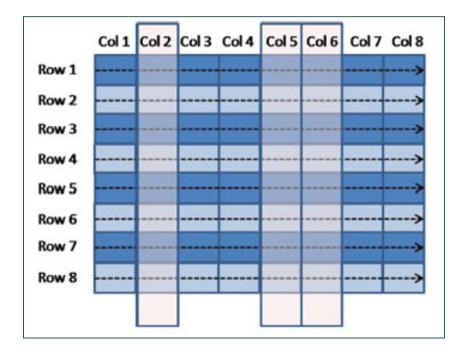
Big Data Architectures COLUMNAR ORIENTATION

Big Data Architectures COLUMNAR ORIENTATION

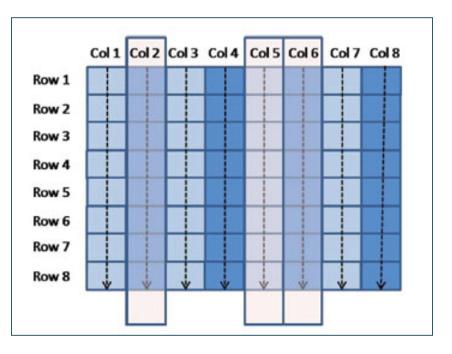
Customer Table

1	John	Kennedy	CO	50000
2	Betty	Smith	CA	55000
3	Sue	Hughes	ТΧ	60000
4	Tom	Jones	NV	65000
5	David	Saunders	CO	70000

Row Serialization: (Written on disk)


1, John, Kennedy, CO, 5000, 2, Betty, Smith, CA, 55000, 3, Sue, Hughes, TX, 60000, 4, Tom, Jones, NV, 65000...

Columnar Serialization: (Written on disk) 1,2,3,4,5,John,Betty,Sue,Tom,David,...50000,55000,60000,65000,70000


SELECT State, SUM(Sales) FROM Table1 GROUP BY state ORDER BY 2;

Big Data Architectures ROW VS COLUMN OPERATION

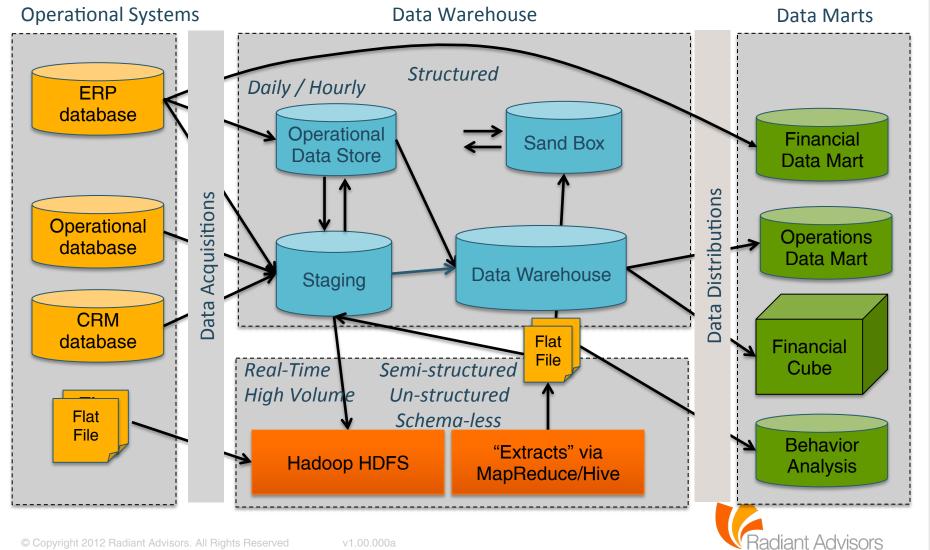
Reading Rows of Data for Columns

Reading only Columns you need

© Copyright 2012 Radiant Advisors. All Rights Reserved

Big Data Architectures SCHEMA-LESS

Web Logs / App Logs


- Data which is best stored without a fixed schema (table design) since the data keeps changing
- Applications which are constantly changing or use self-describing data formats such as XML

Event Data

- Data which contains standard or fixed data structures which allows it to be stored easily in RDBMS
- However, high volume Event Data presents the challenges of loading, managing and accessing this data

Mixed Technology Architectures HADOOP INTEGRATION

Mixed Technology Architectures DATA CLASSES FOR BI

Traditional Data Types:

- Business Operations
- Reference Data Subjects
- Event data as Orders, Tickets

Large Enterprise Data Types:

- High Volume Structured Events
- User Driven
- Transactions, Calls, etc

Data Exhaust Data Types:

- Machine generated data
- Instrumented or Sensors
- Semi-structured
- Schema-less
- User behavior on websites
- Non-record based (Unstructured)
- Text based documents

Mixed Technology Architectures DATA STORE PURPOSE

Traditional Data Types:

- Staging
- Subject oriented data warehouses
- Data marts

Large Enterprise Data Types:

- Data marts
- Data mining
- Operational data marts

Data Exhaust Data Types:

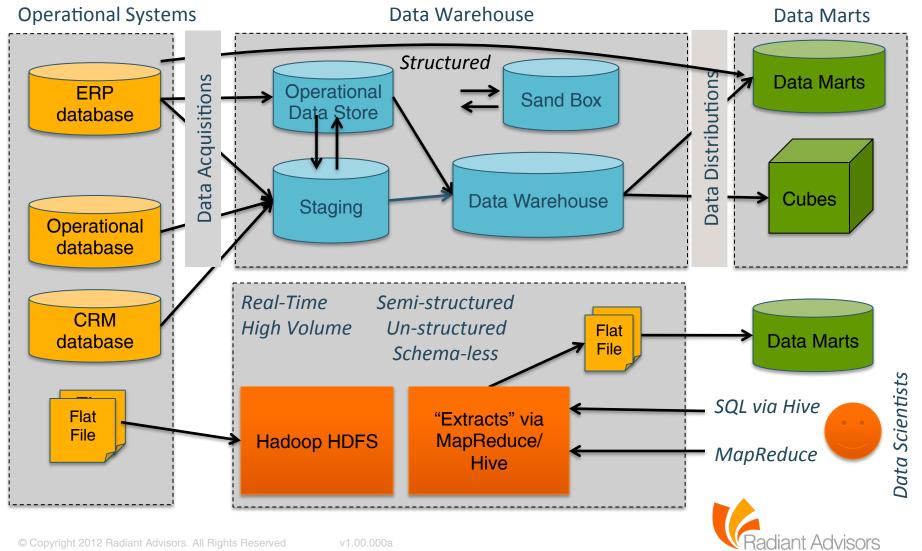
- Staging
- Hadoop Distributed File System
- Data marts
- Sandbox

Mixed Technology Architectures DATA STORE TECHNOLOGIES

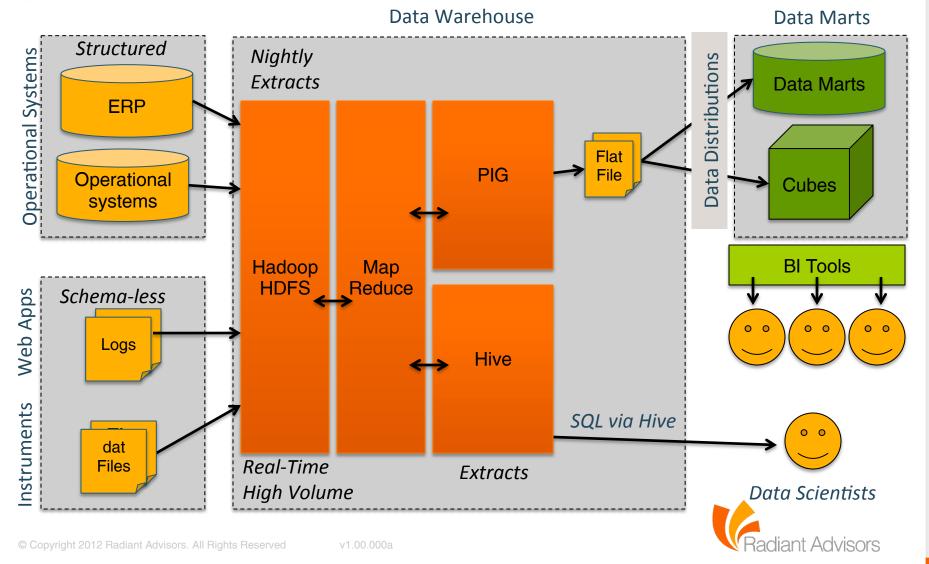
Traditional Data Types:

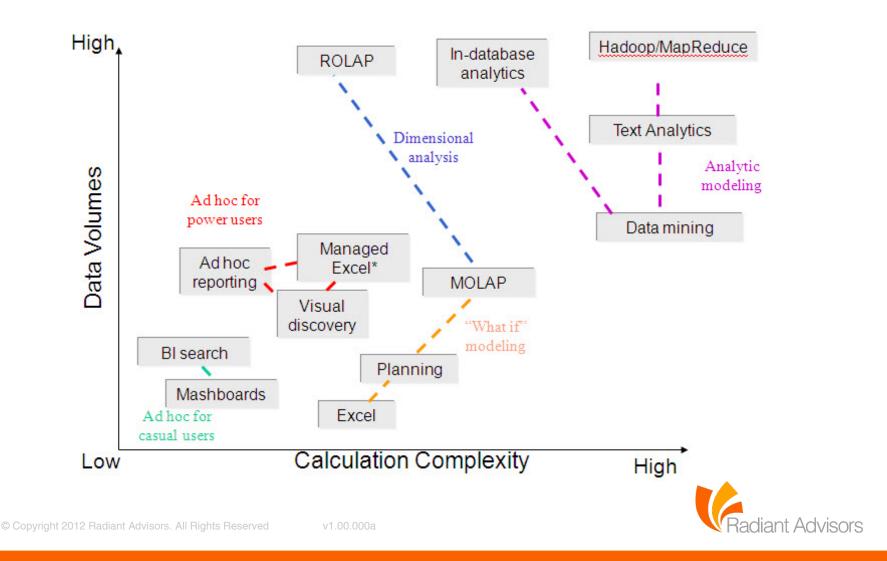
- RDMBS
- In-memory databases
- OLAP/MDDB

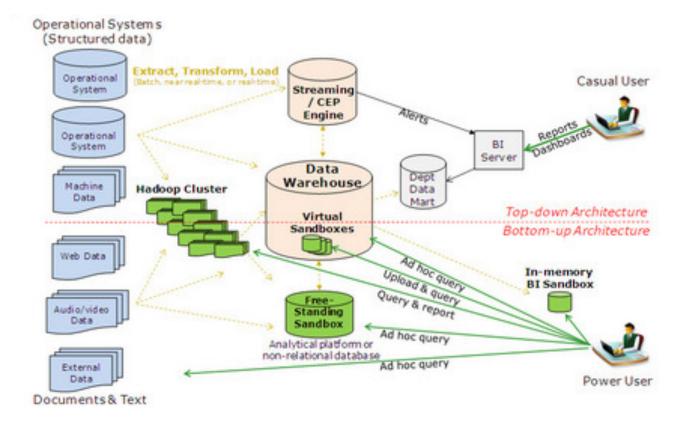
Data Exhaust Data Types:


- Hadoop/MapReduce
- MapR
- HPCC

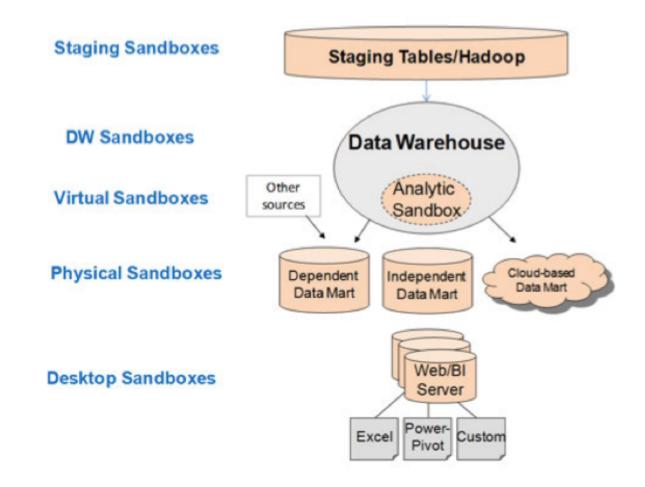
Large Enterprise Data Types:


- Massively Parallel Processing databases
- MPP based appliances
- Columnar databases


Mixed Technology Architectures HADOOP AS INDEPENDENT


Mixed Technology Architectures HADOOP AS DATA WAREHOUSE

Mixed Technology Architectures ANALYTIC TECHNOLOGY CATEGORIES


Analytic Architectures DATA STORE TECHNOLOGIES

The next-generation BI architecture is more analytical, giving power users greater options to access and mix corporate data with their own data via various types of analytical sandboxes. It also brings unstructured and semi-structured data fully into the mix using Hadoop and nonrelational databases.

Analytic Architectures TYPES OF ANALYTIC SANDBOXES

Mixed Technology Architectures ANALYTIC TECHNOLOGIES

In-Database Operation

Non-Database Operation

- DB must be able to execute models
- PMML or MapReduce
- User Defined Functions
- Should be MPP database for scalability and performance

- External execution to database
- MapReduce like environment (MPP)
- Exports to PMML for compatibility

Analytic Architectures ANALYTIC TECHNOLOGIES

Technology	Description	Vendor/Product
MPP analytical databases	Row-based databases designed to scale out on a cluster of commodity servers and run complex queries in parallel against large volumes of data.	Teradata Active Data Warehouse Greenplum (EMC), Microsoft Parallel Data Warehouse, Aster Data (Teradata), Kognitio, Dataupia
Columnar databases	Database management systems that store data in columns, not rows, and support high data compression ratios.	ParAccel, Infobright, Sand Technology, Sybase IQ (SAP), Vertica (Hewlett-Packard), 1010data, <u>Exasol, Calpont</u>
Analytical appliances	Preconfigured hardware-software systems designed for query processing and analytics that require little tuning.	Netezza (IBM), Teradata Appliances, Oracle Exadata, Greenplum Data Computing Appliance (EMC)
Analytical bundles	Predefined hardware and software configurations that are certified to meet specific performance criteria, but the customer must purchase and configure themselves.	IBM <u>SmartAnalytics</u> , Microsoft <u>FastTrack</u>
In-memory databases	Systems that load data into memory to execute complex queries.	SAP HANA, <u>Cognos</u> TM1 (IBM), <u>OlikView, Membase</u>
Distributed file-based systems	Distributed file systems designed for storing, indexing, manipulating and querying large volumes of unstructured and semi-structured data.	Hadoop (Apache, <u>Cloudera,</u> MapR, IBM, HortonWorks), Apache Hive, Apache Pig
Analytical services	Analytical platforms delivered as a hosted or public-cloud-based service.	1010data, <u>Kognitio</u>
Nonrelational	Nonrelational databases optimized for querying unstructured data as well as structured data.	MarkLogic Server, MongoDB, Splunk, Attivio, Endeca, Apache Cassandra, Apache Hbase
CEP/streaming engines	Ingest, filter, calculate, and correlate large volumes of discrete events and apply rules that trigger alerts when conditions are met.	IBM, <u>Tibco, Streambase</u> , Sybase (Aleri), <u>Opalma, Vitria</u> , Informatica

58

© Copyright 2012 Radiant Advisors. All Rights Reserved

REFERENCES & MORE INFO

BOOKS:

- Hadoop in Action
- Beautiful Data, Edited by Toby Segaran & Jeff Hammerbacher, O'Reilly Media 2009
- Blown to Bits, Your Life, Liberty and Happiness after the Digital Explosion, by Hal Abelson, Ken Leden, Harry Lewis. Addison Wesley published 2008.

Websites:

www.apache.com

www.strata.com

Articles & White Papers:

- Analytic Architectures: Approaches to Supporting Analytics
 User Workloads. BeyeResearch by Wayne Eckerson
- The CIO's Guide to NoSQL, Dan McCreary and William McKnight, June 2011. Sponsored by Dataversity and 2011 NoSQL Now! Conference.
- "Data, data, everywhere. The Economist Special Report on managing information. Feb 27, 2010
- The End of Theory: The Data Deluge Makes the Scientific Method Obsolete. By Chris Anderson, Wired Magazine Issue 16.07 Jun 23, 2008
- The Web is dead. By Chris Anderson, Wired Magazine Issue 18.09 Sep 2010
- Release 2.0. O' Reilly Radar Issue 2.0.11 Feb 2009
- What is Data Science? By Mike Loukides, O' Reilly Radar Report 2010

For more information

Visit us at:	www.radiantadvisors.com
Follow us:	Twitter: @RadiantAdvisors
	RSS: feed://radiantadvisors.com/feed/
Email us at:	info@RadiantAdvisors.com

THANK YOU!

Be Radiant!

© Copyright 2012 Radiant Advisors. All Rights Reserved