TDWI WEBINAR SERIES

Modernizing the Operational Data Store with Hadoop

Philip Russom

TDWI Research Director for Data Management January 29, 2014

tdwi.org

Thanks to our sponsors

cloudera

TDWI WEBINAR SERIES

Philip Russom TDWI Research Director, Data Management

TJ Laher Product Marketing Manager, Cloudera

Shawn James Director, Big Data Business Development, Talend

Agenda

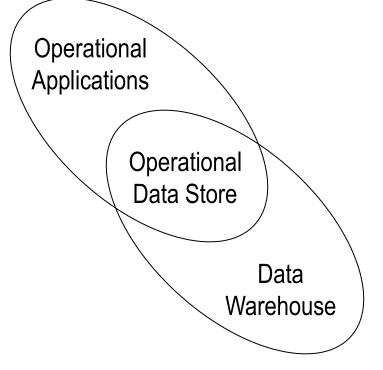
PLEASE TWEET @pRussom, #TDWI, #Hadoop, #BigData, #DataManagement, #Analytics

- Operational Data Stores (ODSs)
 - In use for decades, but with new uses today
 - Handling big data, analytics, scalable data integration, archiving, ent data hubs...
 - In DWs and elsewhere
- ODSs need modernization
 - To support new uses, new data, new architectures
- Hadoop has many uses
 - Imagine Hadoop as a preferred platform for ODSs
 - Scalable, cost effective, flexible, agile, modern
- Recommendations
 - Make room for Hadoop, including ODSs on Hadoop

TDWI WEBINAR SERIES

DEFINITION Operational Data Store

- "The ODS is a basis for doing integrated operational processing, and, in turn, it feeds the data warehouse."
- "The ODS is a separate architectural entity from the data warehouse."
- "An ODS is an architectural construct that is
 - subject oriented,
 - integrated [i.e., aggregated data],
 - volatile [updated regularly],
 - current valued [little or no archived data],
 - and contains only corporate detailed data."
- "Data in the ODS serves the operational community and as such is kept at a detailed level."
 - From "Building the Operational Data Store," Bill Inmon et alia

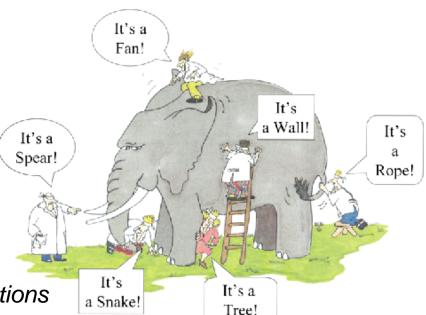


More on the Operational Data Store

- It's a database
 - It's a collection of data, designed by users
 - Usually running on a relational database management system (RDBMS); but some ODSs are file-based
 - Like any database, an ODS can take many forms
- "Just enough structure"
 - Simple data models, often just records in a table, few tables/keys
 - Data is usually "raw," typically original detailed source data or lightly transformed for standardization
- Assumption: ODS data will be repurposed
 - So it's best to keep the original schema, and transform data into new schema, when needed for new analytic applications, etc.
- Used many ways, in many data architectures
 - Data warehousing
 - Data from or for operational applications

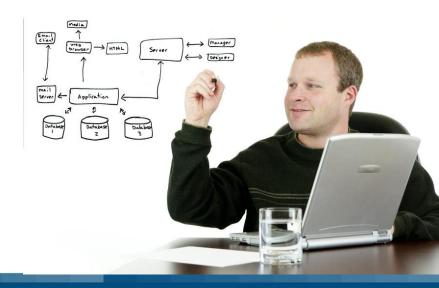
ODS Use Cases Today

- In DW, BI, DI, analytics
 - ODSs act as domain specific databases (similar to marts), data landing areas, staging for ETL and other DI processing, archives of source data, real-time buffer
- In operational applications
 - Customer masters, in many industries, for master data management, CRM, SFA, lookups, integrating data across customer facing apps, etc.
 - Call detail records (CDRs) in telco
 - Transaction records in financials
 - B2B transactions in supply-chain oriented industries
 - The two above cases via one ODS
 - The two architectures may overlap via one ODS


The Evolving ODS and its Uses

- Driving change in ODS designs and uses
 - Big data unlimited scale at a limited price
 - Advanced analytics beyond OLAP to mining, statistics,
 - Enable data exploration and discovery
 - More data in fewer places; less sampling; explore then analyze & visualize
 - Data integration, landing, staging
 - Storage for incoming data, before repurposing it; but at greater scale
 - ETL/ELT and analytic processing pushed down into the ODS
 - Live data archiving online & queryable for many user types
- An Important Goal Multi-purpose ODSs
 - All the above uses and more via one powerful ODS or a short list of integrated ODSs
 - ODS as a consolidation strategy
 - AKA: Enterprise data hub
- Why modernize your ODSs?
 - To leverage new big data and enable new apps and business uses
 - Modernize your EDW and/or other enterprise data
 - Work toward the enterprise data hub and/or other consolidation plans

Working Toward Modern ODSs Using Hadoop as an ODS Platform


- Hadoop is massively scalable
 - Terabytes and petabytes
- Hadoop is cost effective
 - Less than large relational configurations
 - Runs well on commodity hardware
 - Open-source with affordable maintenance
- Handles wide range of data types
 - Both old & new; both structured & not
- Interoperability and integration via standard interfaces
 - Many of your existing tools support Hadoop; more tools coming
- Built for file-based data
 - Much of the data entering an ODS arrives in files
 - Much new data is file based, from sensors, machines, social, etc.
- Track record of supporting multiple apps & uses
 - Hadoop 2 & YARN make Hadoop even better multi-user system

Working Toward Modern ODSs Designing New ODSs

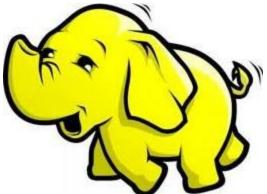
- Choice of platform(s) is key
 - Probably a mix of relational databases and Hadoop
 - Plus, file systems, NoSQL, storage subsystems
 - Data integration platforms with multiple tools
 - ETL/ELT, federation, services, data quality
- Architecting Multi-Use ODSs
 - Similar to shared and conformed data modeling
 - But with simpler schema
 - Or no-schema or new schema
 - Isolate data & workloads, as in any multi-use system

TDWI WEBINAR SERIES

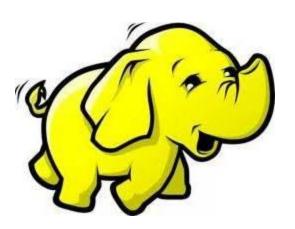
Working Toward Modern ODSs Moving ODS Data to Hadoop

- Collocation
 - Take control of several ODSs, by moving their data to a central platform
- Consolidation
 - Merge multiple ODSs into one or fewer ODSs
- Migration
 - This is the larger process of collocating, consolidating, and improving datasets
- The Fork Lift
 - Where data moved from one platform to another works well on the new platform with little or no alteration of data
 - Users report that ODS data "forklifts" well to Hadoop, typically for use with Hive, HBase, MapReduce, Pig, etc.

A COMMON ARCHITECTURAL EVOLUTION FOR BIG DATA Hadoop integrated with a Relational DBMS


- The strengths of one balance the weaknesses of the other
- A Relational DBMS is good at:
 - Metadata management
 - Complex query optimization
 - Query federation
 - Table joins, views, keys, etc.
 - Security, including roles, directories
 - Much more mature development tools
- HDFS & other Hadoop tools are good at:
 - Massive scalability
 - Lower cost than most DW platforms & analytic DBMSs
 - Multi-structured data & no-schema data
 - Some ETL functions; late binding; custom code for analytics
 - More examples on next slide...

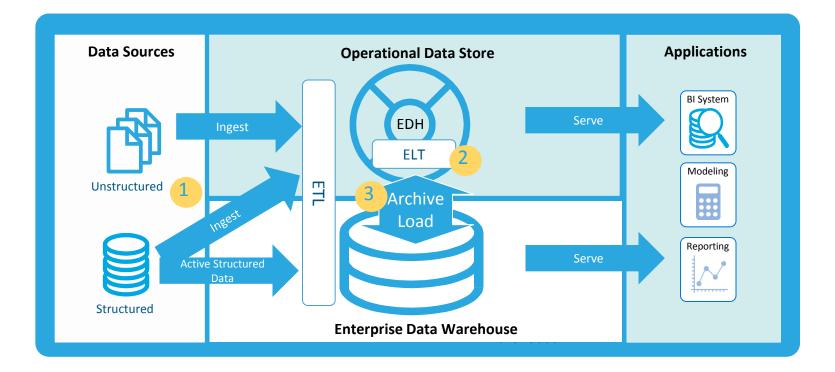
Data Warehouse Architectures are Evolving to integrate Hadoop


- Some organizations are using Hadoop in multiple areas in their DW architectures
 - Extension of DW storage
 - Operational data stores (ODSs)
 - Data staging
 - ETL and ELT

- "Archive" of detailed source data, for analytics
- Advanced algorithmic analytics, processed on Hadoop
- Data exploration, discovery, and visualization
- Even when the above migrate to Hadoop, the core DW still provides data for the majority of BI deliverables:
 - Standard reports, dashboards, performance management, OLAP

It's not just Data Warehouses. Hadoop has Other Enterprise Uses.

- Data archiving
 - Most data archives are old and useless
 - Hadoop can enable a modern "live archive" that's massively scalable and accessible at any moment by any user
- Content management
 - Most "content" is file-based and requires massively scalable search
 - Hadoop excels with those, plus adds broad analytics for content
- Storage as a shared enterprise asset
 - IT provides SAN/NAS
 - Why not Hadoop, too?




Triggers for ODSs on Hadoop

- To modernize an existing data warehouse
 - Migrate ODSs off DW platform to Hadoop
 - Free up DW capacity instead of buying more
- To capture new data and big data
 - An ODS on Hadoop is ideal for log data, sensor data, machine data, device data
- To consolidate data from multiple platforms
 - Consolidate ODSs for better exploration, governance, analytics
 - Consolidate ODSs on Hadoop for low-cost admin & processing
- To deploy an Enterprise Data Hub (EDH) on Hadoop
 - EDH designs vary, but most users create an EDH that resembles an ODS or a series of ODSs
 - Users are trending to fewer, larger, multi-use ODSs, as in EDH

The Modern Architecture

cloudera[®]

Connecting the **Data-Driven** Enterprise

©2014 Talend Corporation

Main Challenges in the Data Integration Market

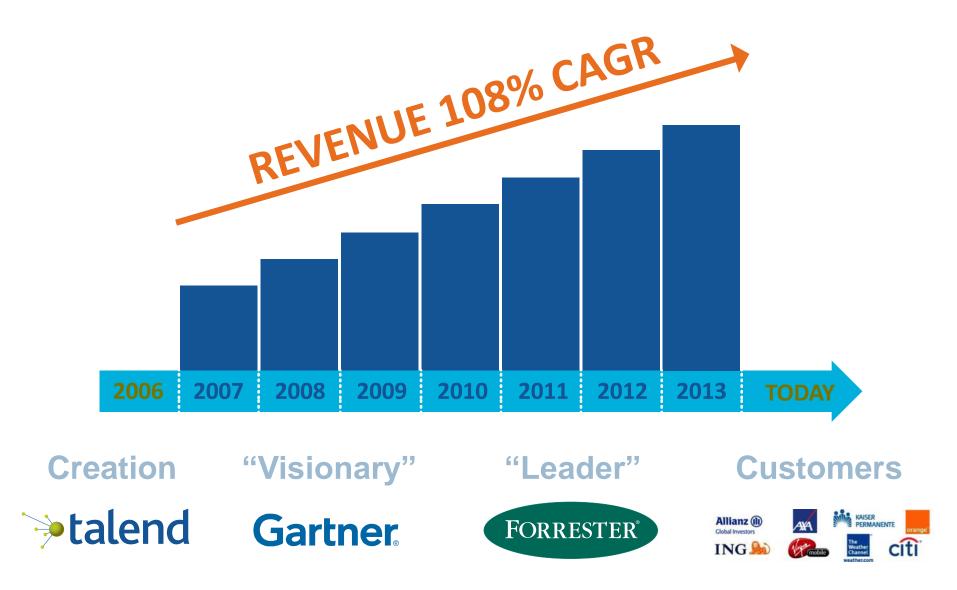
BIG DATA

More data, less structure

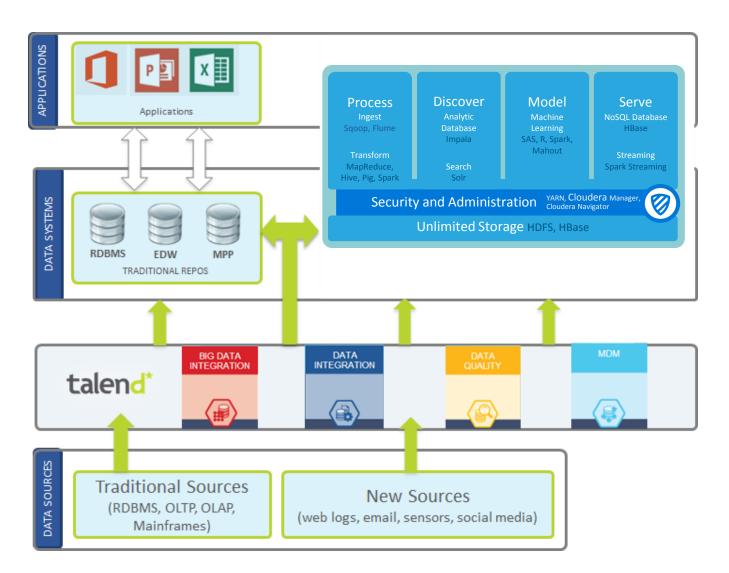
SKILLS Hard to find talent

PRODUCTIVITY

Can't keep up with demand

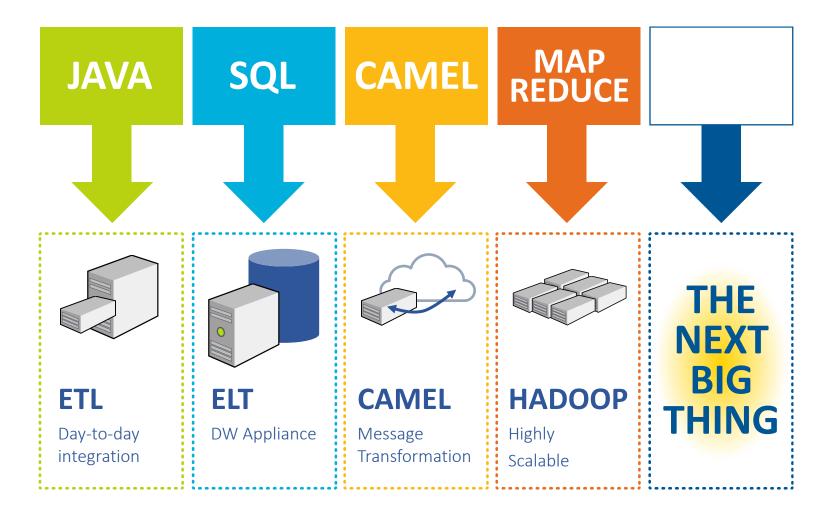


COST Expensive solutions



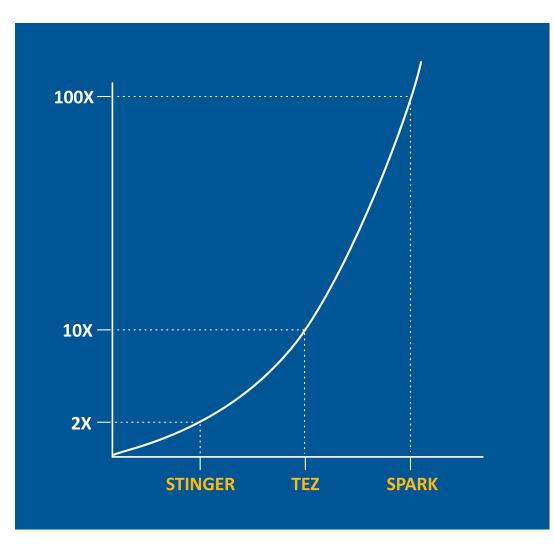
Introducing Talend, a Disruptive Leader

Cloudera / Talend Integration



Talend Big Data

Easiest and Most Powerful Integration Solution for Big Data



Future-Proof Architecture With Native Code Gen

The Performance Benefits of Native

ONLY TALEND RUNS NATIVE ON HADOOP

- 1st on MapReduce
- 1st on YARN
- 1st on Spark (preview)
- 1st on Storm (preview)

Main Challenges in the Data Market

1,800 Leading Brands Use Talend

Questions?

TDWI WEBINAR SERIES

Contact Information

• If you have further questions or comments:

Philip Russom prussom@tdwi.org Shawn James sjames@talend.com TJ Laher tlaher@cloudera.com

