

Abstract
Have you ever had to work with your log files once your application left development? If so, you

quickly run into a few pain points. Learn how to create a “culture of logging” and work smarter

not harder

TECHNICAL TUTORIAL

Smarter Errors & Logs:

Putting the data to work.

Jason Taylor, CTO

2 STACKIFY.COM

Smarter Errors & Logs: putting the data to work.

Logging. We should be doing this better by now.

What do I mean? There are lots of logging frameworks and libraries out there, and most

developers use one or more of them every day. A few examples off the top of my head

for the .Net developers: log4net, nLog, elmah, and the Enterprise Library Logging

Application Block. They are simple and easy to use, and work great for developers

debugging code. It’s still just not enough though.

Have you ever had to work with your log files once your application left development? If

so, you quickly run into a few pain points:

● There’s a lot more data

● You have to get access to the data

● It’s spread across multiple servers

● A specific operation may be spread across service boundaries – so even more

logs to dig through

● It’s flat and hard to query – even if you do put it in SQL, you are going to have to

do a lot of indexing to make it usable

● It’s hard to read

● You generally don’t have any context of the user, etc

● You probably lack some details that would be helpful (you mean “log.Info(‘In the

method’)” isn’t helpful???)

● Managing log file rotation and retention

Additionally, you have all this rich data about your app that is being generated and you

simply aren’t proactively putting it to work.

It’s time to get serious.

Once you’re working on an application that is not in the development environment,

logging messages (including exceptions) are usually your only lifeline to quickly

discovering why something in your app isn’t working correctly. Sure, APM tools can alert

you to memory leaks and performance bottlenecks, but generally lack enough detail to

help you solve a specific problem, i.e. (why can’t this user log in, or why isn’t this record

processing?).

STACKIFY.COM 3

Application troubleshooting market research

At Stackify, we’ve built a “culture of logging” which set out to accomplish these goals:

1. Log all the things. Log as much as we possibly can, to always have relevant,

contextual logs that don’t add overhead.

2. Work smarter, not harder. Consolidate and aggregate all of our logging to a

central location, available to all devs, and easy to distill. Also, to find new

ways for our logging and exception data to help us proactively improve our

product.

 In this post, we’ll explore these concepts, and share what we’ve done to address it,

much of which has become a part of Stackify’s Smart Error & Log Management

(SmartELM) product.

 LOG ALL THE THINGS.

I’ve worked in a lot of shops where log messages looked like this:

I’ll give the developer credit: at least they are using a try / catch and handling the

exception. The exception will likely have a stack trace so I know where it came from, but

no other context. More on this later.

Sometimes, they even do some proactive logging, like this:

4 STACKIFY.COM

Smarter Errors & Logs: putting the data to work.

But generally, statements like that don’t go a long way towards letting you know what’s

really happening in your app. If you’re tasked with troubleshooting an error in

production, and/or is happening for just one (or a subset) of the application users, this

doesn’t leave you with a lot to go on, especially when considering your log statement

could be a needle in a haystack in an app with lots of use.

As I mentioned earlier, logging is often one of the few lifelines you have in production

environments where you can’t physically attach and debug. You want to log as much

relevant, contextual data as you can. Here are our guiding principles on doing that.

Walk the code.

Say you have a critical process that you want to add logging (auditing, really) around so

that you can look at what happened. You could just put a try / catch around the entire

thing and handle the exceptions (which you should) but it doesn’t tell you much about

what went into the request. Take a look at the following, oversimplified example.

Take the following object, which is an Entity Framework Code First POCO object.

1

2

3

4

public class Foo

{

 public int ID { get; set; }

 public int RequiredInt { get; set; }

STACKIFY.COM 5

Application troubleshooting market research

5

6

 public string FooString { get; set; }

}

Notice that it has a field called RequiredInt which is an int that is, surprisingly, not

nullable.

Take the following method, which creates a Foo and saves it to the database. Note how

I’ve opened the door for error – the method takes a nullable int as an input parameter. I

cast it to type int, but don’t check for null. This could easily cause an exception.

1

2

3

4

5

6

7

8

9

1

0

1

1

1

2

1

3

public static void CreateFoos(int? requiredInt, string fooString)

{

 using (var context = new ApplicationDbContext())

 {

 var foo = new Foo();

 foo.RequiredInt = (int) requiredInt;

 foo.FooString = fooString;

 context.Foos.Add(foo);

 context.SaveChanges();

 }

}

6 STACKIFY.COM

Smarter Errors & Logs: putting the data to work.

It’s an oversimplified scenario, but it serves the purpose well. Assuming this is a really

critical aspect of my app (can’t have any failed Foos!) let’s add some logging so we

know what’s going on.

1

2

3

4

5

6

7

8

9

1

0

1

1

1

2

1

3

1

4

1

5

1

6

try

{

 log.Debug("Creating a foo");

 using (var context = new ApplicationDbContext())

 {

 var foo = new Foo();

 foo.RequiredInt = (int) requiredInt;

 foo.FooString = fooString;

 context.Foos.Add(foo);

 context.SaveChanges();

 }

}

catch (Exception ex)

{

 log.Error(ex);

}

STACKIFY.COM 7

Application troubleshooting market research

Now, let’s create some foos; one that is valid and one that is not:

1

2

CreateFoos(1,"The foo is 1");

CreateFoos(null, "The foo is null");

And now we get some logging, and it looks like this:

1

2

3

4

5

6

DEBUG2014-10-31 13:11:08.9834 [11] Creating a foo [CID:(null)]

DEBUG2014-10-31 13:11:10.8458 [11] Creating a foo [CID:(null)]

ERROR2014-10-31 13:11:10.8673 [11]

System.InvalidOperationException: Nullable object must have a

value.

at

System.ThrowHelper.ThrowInvalidOperationException(ExceptionResource

resource)

at System.Nullable`1.get_Value()

at

HelloStackify.Web.Controllers.GimmeErrorsController.CreateFoos(Null

able`1 requiredInt, String fooString) in

c:\GitHub\StackifySandbox.Net\HelloStackify.Web\HelloStackify.Web\C

ontrollers\GimmeErrorsController.cs:line 57 [CID:(null)]

Now we have some logging – we know when Foos are created, and when they fail to

create. But I still feel as if I’m missing some context. Context: let’s talk about that. In this

example, using log4net, we have a few options.

If you look at the signature for the log4net logging methods (log.Debug, log.Info, etc)

you’ll see there are a couple of overloaded constructors:

8 STACKIFY.COM

Smarter Errors & Logs: putting the data to work.

1

2

3

4

public static void Debug(this ILog log, string message, object

debugData)

{

 log.Debug((object) Extensions.GetMessage(message, debugData));

}

See that ‘object debugData?’ Looks like just the ticket, doesn’t it? Let’s change our code

to this:

1

2

3

4

5

6

7

8

9

1

0

1

1

1

2

using (var context = new ApplicationDbContext())

{

 var foo = new Foo();

 foo.RequiredInt = (int) requiredInt;

 foo.FooString = fooString;

 log.Debug("Creating a foo: ",foo);

 context.Foos.Add(foo);

 context.SaveChanges();

}

STACKIFY.COM 9

Application troubleshooting market research

And look at the output of our file logging:

1 DEBUG2014-11-01 09:26:51.8667 [12] Logging a foo [CID:(null)]

Hmm. How about that….. no object. As it turns out, you need to have an appender that

supports serializing that object and outputting it to wherever it logs (in this case, a file

appender). So, we have a couple of additional steps to perform.

1. Serialize the object ourselves (Json.Net works great for this)

2. Create a logging string with a string builder / formatter

1 log.Debug(string.Format("Creating a foo:

{0}",JsonConvert.SerializeObject(foo)));

 This will produce some log output that looks like this

1 DEBUG2014-11-01 10:39:53.3295 [11] Creating a foo:

{"ID":0,"RequiredInt":1,"FooString":"The foo is 1"}

and while it serves the purpose, there are some major drawbacks, mainly in that it’s all

one string and the more objects and data you add, the more code you are writing. I

don’t know about you, but when I’m writing log statements, I want it to be fast and easy.

The Stackify appenders support logging objects without needing to do any serialization

first. It makes it really easy to log complex dynamic objects such as this:

1

2

3

4

5

using (var context = new ApplicationDbContext())

{

 var foo = new Foo();

 foo.RequiredInt = (int) requiredInt;

10 STACKIFY.COM

Smarter Errors & Logs: putting the data to work.

6

7

8

9

 context.Foos.Add(foo);

 context.SaveChanges();

 log.Debug("Created a Foo", new {

Foo=foo,CreatedBy=User.Identity.Name});

}

Which can yield great output like this:

(This output came from the Stackify Logging Dashboard, via the Stackify log4net appender.

More on that later).

Diagnostic context logging

And this brings us to one last point: diagnostic context logging. You’ll notice that I

logged the user that created the object. When it comes to debugging a production issue,

you might have the “Created a Foo” message thousands of times in your logs, but with

no clue who the logged in user was that created it. This is the sort of context that is

priceless in being able to quickly resolve an issue. Think about what other detail might

be useful – for example, HttpWebRequest details. But who wants to have to remember

to log it every time? Diagnostic context logging to the rescue. Log4net, for example,

makes this really easy. (You can read about the LogicalThreadContext here:

http://logging.apache.org/log4net/release/sdk/log4net.LogicalThreadContext.html)

http://logging.apache.org/log4net/release/sdk/log4net.LogicalThreadContext.html

STACKIFY.COM 11

Application troubleshooting market research

To enable diagnostic context logging is really easy. In your log4net config, set up your

logical thread context variables:

1

2

3

<appender name="StackifyAppender"

type="StackifyLib.log4net.StackifyAppender, StackifyLib.log4net">

<logicalThreadContextKeys>User,Request</logicalThreadContextKeys>

</appender>

Then, just log your context items. In my example, I’m logging data from the User

(IPrincipal) and Request (HttpWebRequest) objects. The simplest way to do this is in

my Global.asax on each request.

1

2

3

4

5

6

7

8

9

1

0

void MvcApplication_AuthenticateRequest(object sender, EventArgs

e)

{

 try

 {

 log4net.LogicalThreadContext.Properties["User"] = User;

 }

 catch (Exception ex)

 {

 log.Error(ex);

 }

12 STACKIFY.COM

Smarter Errors & Logs: putting the data to work.

1

1

1

2

1

3

1

4

1

5

1

6

1

7

} void MvcApplication_BeginRequest(object sender, EventArgs e)

{

 log4net.LogicalThreadContext.Properties["Request"] = new

 {

 HostAddress = Request.UserHostAddress,

 RawUrl = Request.RawUrl,

 QueryString = Request.QueryString,

 FormValues = Request.Form

 };

}

(Note: because I don’t want the entire Request object, I just created a dynamic object

with the properties that I care about)

Now, I can simplify my logging statement back to something like this:

1 log.Debug("Created a Foo", foo);

 And get beautiful logging statements output like so:

STACKIFY.COM 13

Application troubleshooting market research

This brings us to the next topic, which is Work Harder, Not Smarter. But before that, I’m

going to address a question I’m sure to hear a lot of in the comments: “But if I log

everything won’t that create overhead, unnecessary chatter, and huge log files?” My

answer comes in a couple of parts: first, use the logging verbosity levels. you can

log.Debug() everything you think you’ll need, and then set your config for production

appropriately, i.e. Warning and above only. When you do need the debug info, it’s only

changing a config file and not redeploying code. Second, if you’re logging in an async,

non-blocking way (such as the Stackify appender), then overhead should be low. Last, if

you’re worried about space and log file rotation, there are smarter ways to do it, and

we’ll talk about that in the next section.

 Work Smarter, Not Harder.

Now that we’re logging everything, and it’s great, contextual data, we’re going to look at

the next part of the equation. As I’ve mentioned, and demonstrated, just dumping all of

this out to flat files (or even SQL for that matter) still doesn’t help you out a lot in a large,

complex application and deployment environment. Factor in thousands of requests, files

spanning multiple days, weeks, or longer, and across multiple servers, you have to

consider how you are going to quickly find the data that you need.

What we all really need is a solution that:

● Aggregates all Log & Exception data to one place

14 STACKIFY.COM

Smarter Errors & Logs: putting the data to work.

● Makes it available, instantly, to everyone on your team

● Presents a timeline of logging throughout your entire stack / infrastructure

● Is highly indexed, searchable, and “smart” about it.

This is the part where I tell you about Stackify SmartELM. As we sought to improve our

own abilities to quickly and efficiently work with our log data, we decided to make it a

core part of our product (yes, we use Stackify to monitor Stackify) and share with our

customers, since we believe it’s an issue central to application performance and

troubleshooting.

First, we realize that lots of developers already have logging in place, and aren’t going

to want to take a lot of time to rip that code out and put new code in. That’s why we’ve

created logging appenders for a few of the most common frameworks (detailed

information on setup and configuration for all can be found here):

● log4net

● log4j

● nLog

● logback

● Elmah

● Or write directly to our API using our common library, inlcluded with all these

appenders or by itself.

Additionally, by using one of these libraries, you also get access to Custom Metrics for

.Net and Java which go along great with our App & Server monitoring product.

Continuing with log4net as a sample, the setup is easy. Just add the binaries to the

project (you can just dump them in the \bin folder and no need to recompile) and add in

some web.config-fu:

1

2

3

4

<log4net>

 <root>

 <level value="ALL" />

 <appender-ref ref="StackifyAppender" />

http://docs.stackify.com/m/7787/l/189767-errors-and-logs-overview
http://docs.stackify.com/m/7787/l/232533-custom-application-metrics-api-for-net
http://docs.stackify.com/m/7787/l/239079-custom-application-metrics-api-for-java

STACKIFY.COM 15

Application troubleshooting market research

5

6

7

8

9

1

0

1

1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

 <appender-ref ref="LogFileAppender" />

 </root>

<!--Use the following to send only exception and error statements

to Stackify -->

 <appender name="StackifyAppender"

type="StackifyLib.log4net.StackifyAppender, StackifyLib.log4net">

<logicalThreadContextKeys>User,Request</logicalThreadContextKeys>

 </appender>

 <appender name="LogFileAppender"

type="log4net.Appender.RollingFileAppender">

 <param name="File" value="stackify.log" />

 <param name="AppendToFile" value="true" />

 <rollingStyle value="Size" />

 <maxSizeRollBackups value="10" />

 <maximumFileSize value="10MB" />

 <staticLogFileName value="true" />

 <layout type="log4net.Layout.PatternLayout">

 <param name="ConversionPattern" value="%-5p%d{yyyy-MM-dd

HH:mm:ss.ffff} [%thread] %m [CID:%property{clientid}]%n" />

 </layout>

 </appender>

</log4net>

 As you can see, if you’re already using an appender, you can keep it in place and put

them side-by-side. Now that you’ve got your logs streaming to Stackify (by the way, if

16 STACKIFY.COM

Smarter Errors & Logs: putting the data to work.

our monitoring agent is installed, you can also pipe Windows Event viewer and Syslog

files to Stackify as well!) we can take a look at the logging dashboard:

This dashboard shows a consolidated stream of log data, coming from all your servers

and apps, presented in a timeline. From here, you can quickly:

● Load logs based on a time range

● Filter for specific server(s) and app(s) or environment(s)

Plus there are a couple of really great usability things built in. One of the first thing you’ll

notice is that chart at the top. It’s a great way to quickly “triage” your application. The

blue line indicates the rate of log messages, and the red bars indicate # of exceptions in

the log detail. In the screenshot above, the rate of both looks pretty steady, but if I zoom

this chart out to the last 7 days it looks like this:

It’s abundantly clear that a couple of days ago, my web app started having a lot more

activity (as shown by the logging level – Stackify monitoring would corroborate this data

STACKIFY.COM 17

Application troubleshooting market research

as it parses and analyzes traffic via web server logs) but more importantly, we started

getting a lot more exceptions about the same time. Exceptions don’t come without

overhead for your CPU and Memory, and they also can have a direct impact on user

satisfaction, which can easily cost real money.

By zooming in on the chart, to this time period, I can quickly filter my log detail down to

that time range and take a look at the my logs for that time range.

A couple of interesting things to point out here:

Search

See that blue text, that looks like a json object? Well, it is a json object. That’s the result

of logging objects, and adding context properties (also objects) earlier. It looks a lot

nicer than plain text in a flat file, doesn’t it? Well, it gets even more awesome. See the

search box at the top of the page? I can put in any search string that I can think of, and

it will query all my logs as if it were a flat file. As we discussed earlier, however, this isn’t

great because you could end up with a lot more matches than you want. Suppose that I

want to search for “Hello World” but only in the context of a property called “testString?”

18 STACKIFY.COM

Smarter Errors & Logs: putting the data to work.

Fortunately, our log aggregator is smart enough to help in this situation. That’s because

when we find serialized objects in logs, we index each and every field we find. That

makes it easy to perform a search like this:

json.testString: “Hello World”

and get just the values that I’m looking for. But I can dig deeper. Say I want to look just

for that statement and filter by a specific user (remember, we added the logged in user

to every statement via the LogicalThreadContext):

json.testString: “Hello World” AND json._context._user._Identity.name:

jtaylor@stackify.com

That yields the following results, with the search strings / objects specifically highlighted.

STACKIFY.COM 19

Application troubleshooting market research

Want to know what else you can search by? Just click on the document icon

 when you hover over a log record, and you’ll see all thfields that

Stackify indexes. (Note: at the time of this writing, we are preparing to release a new

search UI that will provide a dynamic list of filters that you can one-click apply without

having to know any query syntax.)

 Exceptions

You may have also noticed this little red bug icon next to exception messages.

That’s because we treat exceptions a bit differently. Click on it and we present a deeper

view of that exception.

20 STACKIFY.COM

Smarter Errors & Logs: putting the data to work.

Our libraries not only grab the full stack trace, but all of the web request details,

including headers, querystrings, post data, and server variables. In this modal, there is a

“Logs” tab which gives you a pre-filtered view of the logging from the app that threw the

error, on the server where it occurred, for a narrow time window before and after the

exception, to give more context around the exception. Curious about how common or

frequent this error occurs, or want to see details on other occurrences? Click the “View

All Occurrences” button and voila!

I can quickly see this error has occurred 1462 times over the last day, and at a pretty

steady rate. It tells me, as a developer, that I have a pretty persistent bug.

Errors and Logs are closely related, and in an app where a tremendous amount of

logging can occur, exceptions could sometimes get a bit lost. That’s why we’ve built an

Errors Dashboard as well, to give you this same consolidated view but limited to

exceptions.

STACKIFY.COM 21

Application troubleshooting market research

Here I can see a couple of great pieces of data:

● I’ve had a big uptick in my rate of exceptions over the past couple of days

● The majority of my errors are coming from my “Sandbox” environment – to the

tune of about 120 per hour

● I have a couple of new errors that have just started occurring (as indicated by the

red triangles)

Have you ever put a new release of your app out to production and wondered what QA

missed? (Not that I’m saying QA would ever miss a bug……) Error Dashboard to the

rescue. You can watch real time and see a trend – lots of red triangles, lots of new

bugs. Big spike in the graph? Perhaps you have an increase in usage, so a previously

known error is being hit more; or perhaps some buggy code (like a leaking SQL

connection pool) went out and is causing a higher rate of SQL timeout errors than

normal.

In fact, as I was writing this article, I published a change to the app I’m using, and forgot

to first publish the EF Code First migrations (and did not have automatic migrations

turned on). This scenario is exactly what I’m referring to. Front and center on my

dashboard, I see A new error around this, and it’s happening a lot.

22 STACKIFY.COM

Smarter Errors & Logs: putting the data to work.

 It’s not hard to imagine a lot of different scenarios to which this could provide early

warning and detection for. Hmm. Early warning and detection. That brings up another

great topic.

Monitor

Wouldn’t it be nice to be alerted when:

● An error rate for a specific app or environment suddenly increases?

● An error that was specifically resolved starts happening again?

● A certain action that you log does not happen enough, too often, etc?

Stackify can do all of that. Let’s take a look at each.

Error Rates

When we looked at the error dashboard, I noted that my ‘Sandbox’ environment is

getting a high number of errors per hour. From the Error dashboard, click on “Error

Rates” and then select which app / environment you wish to configure alerts for:

STACKIFY.COM 23

Application troubleshooting market research

I can configure monitors for “Errors / Minute” and “Total Errors Last 60 minutes” and

then choose the “Notifications” tab to specify who should be alerted, and how.

Subsequently, if using Stackify Monitoring, I can configure all of my other alerting here

as well: App running state, memory usage, performance counters, custom metrics, ping

checks, and more.

Resolved Errors & New Errors

Earlier on, I introduced a new error by not publishing my Code First migrations when I

deployed my app. I’ve since fixed that and confirmed it by looking at the details for that

particular error. As you can see, the last time it happened was 45 minutes ago:

24 STACKIFY.COM

Smarter Errors & Logs: putting the data to work.

It was a silly mistake to make, but one that is easy to make as well since I don’t have

automatic migrations enabled. I’m going to mark this one as “resolved” which lets me do

something really cool: get an alert if it comes back. The Notifications menu will let me

check my configuration, and by default I’m set to receive both new and regressed error

notifications for all my apps and environments.

Now, if the same error occurs again in the future, I’m going to get an email about the

regression and it shows up on the dashboard as such. This is great little bit of

automation to help out when you “think” you’ve solved the issue and want to make sure.

STACKIFY.COM 25

Application troubleshooting market research

Log Monitors

Some things aren’t very straightforward to monitor. Perhaps you have a critical process

that runs asynchronously and the only record of it’s success (or failure) is logging

statements. Earlier in this post, I showed the ability to run deep queries against your log

data, and any of those queries can be saved, and monitored. I’ve got a very simple

scenario here: my query is executed every minute, and we can monitor how many

matched records we have.

It’s just a great simple way to check system health if a log file is your only indication.

(Here’s a pro-tip: send your Windows Event Logs to Stackify and monitor for W3WP

process crashes and other stack overflow type events).

26 STACKIFY.COM

Smarter Errors & Logs: putting the data to work.

Wrapping Up

All of this error and log data can be invaluable, especially when you take a step back

and look at a slightly larger picture. Below is the Application Dashboard for this app that

contains all of the monitoring:

As you can see, you get some great contextual data at a glance that errors and logs

contribute to: Availability, Satisfaction, and Errors. The site is up (99.8%) but the user

satisfaction is low and errors are high. You can quickly start drilling down to see which

pages are not performing well, and what errors are occurring:

STACKIFY.COM 27

Application troubleshooting market research

And when looking at a specific error, see the associated logs.

All said and done, this has helped us tremendously in improving our own product, to

quickly detect and resolve application issues.

There was a lot to cover in this post, and I feel like I barely scratched the surface. If you

dig a little deeper, or even get your hands on it, you can! I’ve made the sample app

available here on GitHub and you can log into our demo environment and try out all the

features I’ve demo’d here.

Just go to http://s1.stackify.com

Login as: sandboxuser@stackify.com with the password ‘sandbox-1’ and you will be in

a (limited) account where you can view and query all of the errors and logs, plus see the

application monitoring.

https://github.com/stackify-dev/StackifySandbox.Net
http://s1.stackify.com/

28 STACKIFY.COM

Smarter Errors & Logs: putting the data to work.

About Stackify
Stackify is the industry’s only platform that combines error-aware log management and
smart error aggregation. The solution optimized for dynamic environment, providing cross-
server aggregation all errors and logs. Stackify also provide an optional comprehensive
application monitoring, performance management, custom metrics, notification, and
secured data access for better app troubleshooting. Stackify provides developers and
operations with DevOps insight, allowing them to detect issues before they affect business
and shorten time to resolution to ensure a better end user experience.
Try it now for free at http://www.stackify.com/

http://www.stackify.com/sign-up/?utm_source=ELM%20White%20paper&utm_medium=whitepaper%20link&utm_campaign=ELM%20White%20paper
http://www.stackify.com/sign-up/?utm_source=2014-market-research&utm_medium=whitepaper%20link&utm_campaign=2014-market-research

	h.dt7nr9kevv1d
	h.8vtd477yk70t
	h.6whaveu66e9b
	h.yowyh7i1e1z6
	h.yshqfqjlqxu5
	h.d9scvlkp2o1q
	h.2ltadw8zc1w1
	h.4ifpvjdlcpmq
	h.4v5u83kzw2xo
	h.mdsoennzu2z3
	h.3fxslapcemlm
	h.8qqwp4jbuuiy
	h.kbvytt6xm98
	h.mqd00e3yod3

