
THE COMMAND LINE:
REINVENTED FOR
MODERN DEVELOPERS

Progress.com 2

Modern developers are often polyglots—they dabble in different
operating systems, programming language, frameworks and tools
as they build the next generation of amazing applications. On
top of that, modern applications run on a variety of platforms and
devices, all leading to very mixed developer skillsets and tools
of the trade. No longer are developers stuck on a platform or
tooling silo—developers should be able to use any development
platforms or tools of their choice to build applications. This is the
new mindset, and modern application frameworks are catering to
the flexibility developers need.

A developer may be using Windows, MacOS/OSX or Linux as the
development machine operating system and the development
tools should be consistent across the platform of choice. What’s
the one thing common across all these desktop operating
systems? They all have a command line! And accordingly,
command line interface (CLI) tools have quickly become the de
facto lowest common denominator. It is not by chance that CLI
tools have become popular of late—makers of developer tools
quickly realized the ubiquity of command line in this polyglot
world and are now catering to developers by offering them
basic CLI tooling first. If one goes back to the basics, CLI tools
work consistently cross-platform and provide a foundation for
Graphical User Interface (GUI) tools to be built on top as need be.

It is fair to say that command line has made a big comeback,
thanks to its cross-platform flexibility. Developers love CLI tools
that give them the freedom to work from any operating system
and pick the tools of their trade. This trend is solidified by the
fact that most development platforms these days are offering
tools beginning with CLI first.

This whitepaper celebrates the resurgence of CLI tools and
provides insight into how modern development platforms cater
to application development through CLI—for web, desktop and
mobile channels.

https://www.progress.com/

Progress.com 3

Here’s what’s in store:

1. Become a CLI Artisan on Windows: Let’s stop
complaining that the Windows command line
experience isn’t the best. Modern tooling and
code editors give you the top notch experience,
making you a pro using CLI tools on Windows.

2. .NET CLI Decoded: We explore the new .NET
CLI for building console/web applications on top
of the new .NET Core. While the .NET CLI works
consistently everywhere, we specifically focus on
non-Windows development workflows, just to
showcase the flexibility.

3. A Git CLI Reference for Beginners: Every
developer needs source control and GitHub
is one of the most popular distributed source
control systems. We explore the basics of some
CLI tools that make source control workflows a
breeze, all powered by Git.

4. Modern ASP.NET Tech Stack and CLI Tooling:
Does your ASP.NET stack now include AngularJS
and NodeJS? If so, you’re in good company.
We’ll take a brief look at some modern ASP.NET
tooling. Surprise, it’s CLI here as well.

5. Rapid Cross-Platform Development with the
Angular 2 CLI: Build your next web application
powered by one of the most popular JavaScript
application frameworks—Angular. Did you know
you get a great CLI experience with Angular as
well? Enlist command line to scaffold, build and
deploy Angular 2 applications.

https://www.progress.com/

Progress.com 4

Become a CLI Artisan
on Windows

Not long ago, developers were trying to come to terms with the graphic user
interface (GUI). The tool of the trade was the command line Interface, because
it was the only way. Visual Studio slowly transformed Windows developers by
abstracting away command line tools until they were no longer a “necessity.” Only
a rare sighting of the CLI might have been seen in the dimly lit rooms of system
admins and dev ops.

Today, there is a resurgence of the CLI among developers. There are many
invaluable CLI tools like Git that make developers’ lives easier. Developers today
are looking for more cross-platform opportunities, where Visual Studio isn’t front
and center, and if you’re working with modern JavaScript, CLI tools are an absolute
necessity.

On Windows, the CLI has suffered from its years of obscurity as Microsoft moved
to “Visual” everything. While it can still perform the necessary functions, the
default shell provides just the basics. Even the simplest luxuries, like copy/paste,
font size and tabs, are either nonexistent or a chore to use.

Let’s look at a few simple tools that can transform your CLI developer experience
from dismal to dazzling. It’s time to reclaim your CLI and become a CLI artisan on
Windows.

https://www.progress.com/

Progress.com 5

Chocolatey
The first step in retooling your CLI is to ensure you’re using Chocolatey. Think
of Chocolatey as the NuGet package manager for Windows software. You
can quickly search for apps like Chrome, Notepad++ and 7-Zip, and manage
the installation, configuration and uninstallation of software with just a few
keystrokes.
In addition, Chocolatey integrates with several infrastructure automation tools.

In just a few simple steps (which are nicely laid out for you in the install
documentation), you can get Chocolatey up and running.

We’ll be using Chocolatey to install more CLI tooling, so if you’ve heard of
Chocolatey and just haven’t tried it yet, there’s no better time than now. If
Chocolatey is already installed and you just haven’t touched it in a while, no
problem—just run choco update chocolatey to update it to the latest version.

https://www.progress.com/
https://chocolatey.org/install
https://chocolatey.org/install

Progress.com 6

Posh-Git
If you spend any time with Git or GitHub, or maybe it’s on your developer bucket
list, then Posh-Git is the next CLI tool for you. Posh-Git is a PowerShell module
that incorporates a Git repository status right in the prompt. When Posh-Git
detects a Git repository at your current location, the prompt shows the current
branch and the state of files (additions, modifications and deletions) within. The
status is also color coded so you can see the state of the repository at a glance.

Adding Posh-Git to your CLI is as simple as getting the package through
Chocolatey and following the prompts.

choco install poshgit

Once Posh-Git is installed, just navigate to a folder where you have an active Git
project and see for yourself how useful Posh-Git can be.

ConEmu
Now that we have our Posh-Git-enabled PowerShell command tool, let’s ditch that
classic command shell and upgrade to something more versatile. We’ll be trading out
the standard Windows command prompt in favor of a shell that can handle different
command shell configurations for specific tasks. This will also let us use the Posh-Git/
PowerShell combo as a default.

https://www.progress.com/
http://dahlbyk.github.io/posh-git/

Progress.com 7

Copy/Paste
Copy/paste is an indispensable feature for modern development. With the
variety of CLI tooling available, there’s also a lot of commands to remember. With
ConEmu, there’s no more struggling to copy word-for-word a command from a
tutorial, guide or help resource. Simply press ctrl+v as you would in any app and
the command is pasted right in. Sure, this is finally a feature on the default
Windows 10 command line tool, but too little, too late.

We’ll be installing a modern Windows console called ConEmu. ConEmu is a
Windows console emulator with tabs, which presents multiple consoles and
simple GUI applications as one customizable GUI window. ConEmu comes
packed with features that simplify the developer experience such as: tabs,
presets, copy/paste, themes and much more.

choco install conemu

After installing, set the default console to PowerShell (Admin) so you’ll always
start with a developer-friendly Posh-Git-enabled console.

https://www.progress.com/
https://conemu.github.io/

Progress.com 8

Split Screen and Tabs
Having organized tabs for your console is another great feature that you may
not think you need until you make use of it. Many JavaScript tools use a “watch”
mechanism or kick off a web host. These tools often take control of your console until
the process is terminated. With tabs, this isn’t a problem—simply kick off your watch
task then open a new tab and continue working. Checking back in on your watch task
or seeing if a web host has reported errors is just a tab click away.

You can choose to organize consoles with a split screen as well. Just right click on any
tab and choose Restart or Duplicate > Split to right. Now you can place processes
side by side, or maintain a working console while monitoring a process.

https://www.progress.com/

Progress.com 9

Presenter Mode
Don’t forget to look into the settings for full control over fonts. If you’ve ever had
to present at a stand-up, user group or simply demo code, you’ll understand how
important it is to change the font size for your audience.

Create a Custom
Console
ConEmu supplies some useful prompts or “tasks”
out-of-the-box. You can easily add your own
through the settings panel. For example, we can
easily add the Developer Command Prompt for
VS2015, so that it’s accessible from ConEmu.

First, you’ll need to look at the properties of the
Developer Command Prompt for VS2015. This was
created for you when VS2015 was installed. Simply
search for “Developer Command,” then right click
and choose “Open file location.”

https://www.progress.com/
http://conemu.github.io/en/Tasks.html

Progress.com 10

Next, open the properties for the shortcut and leave it open. You’ll need the
Target and Start in fields for the settings in ConEmu.

In ComEmu, click Settings and then navigate to Startup > Tasks. Next:
1. Click [+]
2. Name the task SDK::VS 14.0 DevCmd
3. Copy the Target to the commands text box
4. Click Startup Dir, and copy the Start in value

https://www.progress.com/

Progress.com 11

Save your settings and you now have easy access to the Developer Command Prompt
for VS2015. In ConEmu, click to open a new tab and navigate to SDK > VS 14.0 DevCmd.

Visual Studio Code

https://www.progress.com/

Progress.com 12

Visual Studio is a great IDE—it handles everything for software
development from file-new-project to deployment. However,
there are times where you just need a quick editor to work
on that one off Markdown or JavaScript file. Or perhaps you
would like to work on a project that doesn’t need a slick IDE
and is designed with CLI tooling in mind. For those situations,
the Visual Studio Code editor is a fantastic option. To install VS
Code, we’ll simply rely on Chocolatey again, just execute the
command below and you’re ready to go.

choco install visualstudiocode

With VS Code installed, we now have a complete tool set for
CLI craftsmanship. Next, we’ll focus on some simple tips and
tricks that will help with efficiency.

Tips/Tricks
These next few tips are designed to help you navigate from
CLI, to file Explorer, to VS Code and back. You can think of this
as having a fancy, well-organized tool belt where every tool is
always within reach.

From CLI to Code
Anytime you’re in the console and need to fire up Visual Studio
Code, simply type code ..The . parameter will initialize VS Code
at the current path. You can also start VS Code for just a file
using code <filename>. If VS Code is already running, reuse the
instance by adding the -r parameter, for example code . -r

From CLI to File
Explorer
If you would like to view your current path in file explorer, the
same trick applies. In the console just enter explorer . to jump
into the GUI.

https://www.progress.com/

Progress.com 13

From File Explorer to CLI

There are many times where the GUI File Explorer is just easier to navigate. While
browsing, you can jump straight to the CLI on the current folder by enabling the
integration feature on ConEmu.

Open the ConEmu settings Win + alt + p and navigate to Integration and add the
following settings under ConEmu—Explorer context menu integration:

• Menu Item: CLI Here
• Command: /single -run {Shells::PowerShell (Admin)} -cur_console:n
• Icon file: PowerShell.exe

Make sure you click Register and Save settings to complete the setup.

Now you can enter the CLI from a right click on any folder, no more typing long
file paths.

https://www.progress.com/
http://conemu.github.io/en/SettingsIntegration.html

Progress.com 14

From Code to CLI
Visual Studio Code already has a menu shortcut for the CLI, however
it only launches the default Windows console. Let’s get VS Code to
use ConEmu instead, this will let us jump straight into our PowerShell
prompt.

Open the ConEmu settings Win + alt + p and navigate to Integration
and then to Default term. Look for the setting, List of hooked
executables or windows … and append | code.exe to the setting. Also,
enable the setting Use existing ConEmu window if available to make
the experience seamless.

Be sure to click Apply and Save settings to complete the setup.

Now clicking “Open in Command Prompt” in VS Code will use ConEmu
instead. Note that a restart of VS Code may be required.

Internal VS Code Prompt
In the May release of Visual Studio Code, an internal command prompt
was added. If you would like to access the terminal directly from within
the editor simply press Ctrl + .̀ Now that’s easy access!

https://www.progress.com/

Progress.com 15

.NET CLI Decoded

What was cool once has become cool again. Thanks to the infectious enthusiasm
of developers, command line tooling is back again—even for .NET development.
Guess what else is back? ASCII art! You could contemplate adding some ASCII
artwork on top of your C# code files.

Jokes aside—the command line is a powerful user interface and CLI tooling
provides developers with lots of flexibility to aid in development and DevOps
workflows. With the new .NET Core framework, the focus is squarely on CLI
tooling to lower the barrier to entry and make .NET development accessible to all.

Whether you use Windows, OSX or Linux, the command line works the same way
everywhere. Let us explore some of the new cross-platform .NET CLI tooling.

https://www.progress.com/
https://en.wikipedia.org/wiki/ASCII_art

Progress.com 16

The New .NET CLI
Let us see what the new .NET development experience is like on a fresh OSX
machine. First, you need to get some things set up. You can get started at the .NET
website:

1. Install XCode Command Line tooling, if you don’t have it. While you’re not doing
iOS development, some things are included in the XCode CLI that are needed.
You can install just the CLI without getting the gigantic XCode IDE—simply enter
xcode-select --install in terminal and accept the install.

2. Get HomeBrew, if you haven’t already—the popular package manager for OSX/
Linux machines.

/usr/bin/ruby -e “$(curl -fsSL https://raw.githubusercontent.com/Homebrew/

install/master/install)”

3. You need an updated OpenSSL through Homebrew. These commands will do it:

brew update

brew install openssl

brew link --force openssl

4. Install the official .NET Core for OSX Package. This should be a simple install
wizard that sets everything up for you--including getting you the .NET CLI tools.
.NET Core hit the RTM milestone recently, so based on whether you did the
install before or after, you’ll see the changed logo.

https://www.progress.com/
https://www.microsoft.com/net
https://www.microsoft.com/net
http://brew.sh/
https://go.microsoft.com/fwlink/?LinkID=798400

Progress.com 17

Now compare that to:

Once the install finishes, you should have all of the pieces in place to
start building apps with the new .NET Core framework. The new CLI
is a foundational cross-platform toolchain for developing .NET Core
applications—one over which other complex tooling can be built on.

https://www.progress.com/

Progress.com 18

Meet dotnet—the generic driver for running the command line tools. Invoked on its
own, it will give out brief usage instructions or fire up specific IL code if pointed to a
DLL path. The primary usage, however, is using the convention dotnet <command>,
where you execute verbs/commands through the dotnet driver. Any time you need
help, fire up the help command, like so: dotnet -h/--help.

DotNet Commands
The new .NET CLI comes pre-packed with some existing commands—essentially
‘verbs’ that the dotnet driver can execute. Each command has a set of optional
parameters and can take arguments. Let’s explore all the available built-in
commands, along with the popular options that you may find useful.

DotNet New
Initializes a .NET Core application project

• Bootstraps project with bare essential files

Options:
• -l/–lang | Choose preferred language | Valid choices – ‘C##/F##’
• -t/–type | Choose preferred app type | Valid choice now – ‘console’ | May be

expanded in future

You can see a sample usage in which a new directory is created and then the dotnet
new command is invoked--things work “in place.”

https://www.progress.com/

Progress.com 19

The result is pretty basic—a boilerplate console application with just enough to
run itself. The ingredients are a project.json file with all dependencies, a program.
cs file with executable code and a NuGet.Config that points to the NuGet source
to resolve dependencies.

Here’s the boilerplate project.json—notice the dependencies and frameworks nodes.

And here’s program.cs—the glorious code that spits out ‘Hello World’ on console.

https://www.progress.com/

Progress.com 20

DotNet Restore
• Restores the dependencies for a given project from NuGet using Project.JSon file
• The NuGet feed source is configured in the NuGet.config file
• By default, looks first for packages in the NuGet package cache

Options:
• -s/–source | Override NuGet.config source of NuGet packages
• –packages [Dir] | Specifies the target directory for restored packages

The first time you run dotnet restore on a fresh machine, all .NET Core basic
dependencies will be pulled down from NuGet servers—about 100 packages.

NuGet packages that are pulled down are cached for subsequent usage in a global
NuGet cache, which, by default, is .nuget/packages in the user’s home directory, as
seen below. Subsequent restoration of the same dependencies is very quick.

https://www.progress.com/

Progress.com 21

DotNet Build
• Builds a .NET Core application
• Compiles all dependencies to produce a binary executable
• dotnet restore must have been run prior
• Outputs binaries in child Bin folder

Options:
• -o/–output [Dir] | Target directory to put compiled binaries
• -f/–framework [Framework] | Compile for a specific framework defined in

project.json file

In our case, take a look at the binaries created for the corresponding frameworks—
nice and simple.

DotNet Run
• Runs application from source code ‘in place’
• Combines compile, build binaries and launch into one step
• Depends on dotnet build

Options:
• -f/–framework [Framework] | Runs the app for a given framework identifier
• -p/–project [Path] | Specifies which project to run | Path points to project.json

in the project directory

https://www.progress.com/

Progress.com 22

Here’s our ‘Hello World’ console app—running unceremoniously.

DotNet Test
• Executes unit tests for given project and gives you guilt if you don’t unit test
• Uses configured test runner in project.json
• Resolves dependencies on NUnit/XUnit and bootstraps tests as class libraries
• Defaults to running tests in Console mode

Options:
• [Path] | Specifies the path to test project | Defaults to the current directory if

omitted
• -o/–output [Dir] | Directory in which to find binaries to run

https://www.progress.com/

Progress.com 23

DotNet Pack
• Creates a NuGet package of your code
• Build nupkg packages with source and debug symbols
• NuGet dependencies of the project being packed are added to the nuspec

file for resolution
• Builds the project as first step before packaging

Options:
• [Path] | Specifies path to project to be packed | Defaults to the current

directory if omitted
• -o/–output [Dir] | Directory in which built packages are placed

DotNet Publish
• Publishes a .NET application in a bundled container
• Packs application and all dependencies into single folder for publishing
• Packaging includes application’s Intermediate Language (IL) code and

dependencies for portable applications
• For self-contained applications, packaging includes IL, dependencies and

runtime of the targeted platform

Options:
• [Path] | Specifies path to project.json of project to be published
• -o/–output [Dir] | Directory in which the built packages are placed
• -f/–framework [Framework] | Publish the application for a given

framework as defined in project.json
• -r/–runtime [Runtime] | Publish the application for a given runtime

Extending the .NET CLI
So hopefully you are on board with the new .NET CLI, but perhaps you realize
that your development or DevOps workflows need a few more commands. You
can easily extend the .NET CLI through custom commands.

https://www.progress.com/

Progress.com 24

.NET CLI tools can be extended in two main ways:

1. NuGet Packages on per-project basis
2. System Path on per-machine basis

The two extensibility options aren’t mutually exclusive—you could easily mix
and match.

NuGet Extensibility
To extend the .NET CLI with custom tools to use in specific projects, all you have
to do is create a portable console application that runs on top of .NET Core.
Your application can then be packaged up (using dotnet pack) and distributed
through NuGet. To consume, you simply need to make a reference to the tooling in
project.json. The custom tooling is only available in the context of the project that
references/restores the NuGet package.

Your project needs to follow the .NET CLI driver-command nomenclature of dotnet-
<command>. To consume, you simply need to add a Tools section in projects’ project.
json, like so:

“tools”: {

 “dotnet-domything”: {

 “version”: “1.0.0”,

 “imports”: [“dnxcore50”]

 }

}

Once dotnet restore is run on the project, the NuGet tool and all of its dependencies
are resolved. You can then happily use the command dotnet-domything, but only in
context of your project.

Since custom tools are simply portable applications, the user consuming the tool has
to have the same version of the .NET Core libraries that the tool was built against
in order to run the tool. Any other dependency that the tool uses and that is not
contained within the .NET Core libraries is restored and placed in the NuGet cache.
The entire tool is, therefore, run using the assemblies from the .NET Core libraries as
well as assemblies from the NuGet cache.

https://www.progress.com/

Progress.com 25

Path Extensibility
Path-based extensibility allows you to build custom
.NET CLI tooling that can be used across multiple
projects, but only on the given machine. The one
drawback is portability to another machine requires
deploying the tool elsewhere. Nevertheless, Path-
based extensibility wins with simplicity and ease of
use—just follow the CLI extensibility conventions.

The dotnet driver can invoke any command that
follows the dotnet-<command> convention. The
default resolution logic will first probe several
locations in the context of the project and finally fall
back to the system PATH. If the requested command
exists in the system PATH and is a binary that can
be invoked, the dotnet driver can invoke it.

The custom binary tool can be pretty much anything
that the operating system can execute. On Unix or
OSX systems, this means any command script saved
as dotnet-domything that has the execute bit set
via chmod +x. On Windows, it means anything that
Windows knows how to run. That’s it—simple.

Conclusion
Yes, command line tooling is very cool and powerful.
Embracing it with an open mind will reward you with
flexibility—if you know what you’re doing. The new
.NET framework is lean, modular and open source. It
is cross-platform and takes your .NET apps to places
never possible before. And .NET CLI provides the
consistent foundational toolchain to build new .NET
Core applications everywhere.

While the new tooling definitely helps, your
apps will continue to be complicated to serve
specific business needs of your customers. Unless
you’re building console apps, you probably need
professionally built UI controls—for web, desktop
or mobile. Have we mentioned that with Telerik®
DevCraft™ by Progress, you can create awesome
UI for your apps with an all-encompassing .NET
Toolbox? It’s free to try, so go ahead and give it a
shot.

Step boldly, ye .NET Developer—it’s a brave new
world. The command line is your friend!

https://www.progress.com/
http://www.telerik.com/devcraft
http://www.telerik.com/devcraft
https://www.telerik.com/download-trial-file?pid=ULTC&lict=1

Progress.com 26

A Git CLI Reference for Beginners

Hopefully, no one needs to sell you on GitHub—the world’s largest open-
source community. GitHub is home for most developers—a fast, flexible social
environment to build personal projects, support enterprises and collaborate on
open-source technologies.

The underpinnings of GitHub is Git—a free, open-source, cross-platform and
highly productive distributed version control system. GitHub conveniently wraps
all of Git’s features into polished UI tools for your chosen development platform,
namely:

• GitHub for Windows: https://windows.github.com
• GitHub for Mac: https://mac.github.com

But you are a developer and nothing appeals more to your than pure text on
a bland terminal window. Everything you do through the GitHub UI tools first
began life as command line tools via the the Git CLI. And it is incredibly powerful.

This is your cheat sheet of common Git CLI commands. The best news is that all
of the commands work the exact same way on Linux, Mac OS/OSX and Windows.

https://www.progress.com/
https://github.com/
https://git-scm.com/
https://windows.github.com
https://mac.github.com

Progress.com 27

Command Prompt Basics
First, let’s get a basic command line refresher under our belt—most commands
work consistently across the Bash and DOS command prompts.

ls

List Directory contents: Provides a list of all files/folders in given working
directory.

cd <DirectoryName>

Change Directory: Navigates to the given folder as working directory. cd /
navigates to root folder and cd .. traverses one level up to the parent directory
of the current working directory.

mkdir <DirectoryName>

Make Directory: Creates a new folder in place.

open -a “TextEdit” .bash_profile

Opens the bash_profile file in TextEdit on a Mac. If you’re on Linux/OSX systems,
the bash_profile is the user’s personal initialization file, executed by login shells as
the terminal command prompt starts up.

PS1=”\u @ \t: 🤘 “

Also on Linux/OSX, the Bash shell command prompt can be customized using
PS1-4 Prompt Statements—essentially environment variables. You could add PS
variables in your bash_profile to customize the command prompt. Above is mine
with an Emoji in my command prompt—because why not!

clear

Clears terminal window of past commands and outputs—provides fresh
command prompt.

https://www.progress.com/

Progress.com 28

Git Commands
Now let’s dig into the Git CLI. This is not an
exhaustive list, but focuses on the most frequently
used commands.

git config --global user.name “<UserName>”

Sets the name you want attached to your commit
transactions.

git config --global user.email “<UserEmail>”

Sets the email you want attached to your commit
transactions.

git init <ProjectName>

Initializes a new Git repository. Transforms a regular
folder into a directory that can accept Git commands.

git clone <RemoteGitHubURL>

Copies down a remote GitHub repository along with
all the version history to a local working directory.
Maps the directory for further commands.

git status

Checks the status of a given repository. Lists the
working branch and any new/changed files that
need to be committed.

git diff

Shows the file differences not yet staged.

git add <FileName>

Brings new files in your repository to Git’s attention
for tracking. Includes the file in the repository
snapshot for versioning.

git add .

Adds a batch of files to Git’s tracking in a local
working directory. Adds everything in one
swoop. This command could also add files with a
specific extension or other filters.

git reset <FileName>

Unstages the named file from the repository
snapshot, but preserves its contents.

git branch

Shows all the local branches in the current
repository.

git branch <BranchName>

Creates a new branch in the current repository.

git checkout master/<BranchName>

A navigational command that switches the working
directory to master/named branch. The files are
representative of the state of master/branch.

https://www.progress.com/

Progress.com 29

git commit -m “<CommitMessage>”

Commit changes that you have made in your
working directory with a descriptive message.

git merge <BranchName>

Merge changes made in a given branch to the
master branch. Makes updates visible to all
repository collaborators.

git branch -d <BranchName>

Deletes a branch after changes have been merged
with master branch.

git remote add origin <RemoteURL>

Introduces local Git to remote repository (typically
GitHub). Adds hooks for pull/push for syncing with
remote source.

git push --set-upstream origin master

Pushes local repository changes to a remote master
branch in a linked repository (again, probably
GitHub). Syncs remote with local.

git pull origin master

Pulls down a master/named branch from a linked
remote repository to a local working directory. Syncs
local with remote.

git help

Forgot something? Pull up the Git CLI Help to look
up commands with the option to dig further into
each command.

Pro Tips
As you collaborate more and more on GitHub
projects, you may find these tips to be helpful:

1. Delete branches after the corresponding
pull request has been merged onto master.
Orphaned branches only cause confusion.

2. Fork a project, branch off and make a pull
request sooner rather than later. This announces
your intent to work on something to the rest
of the collaborators. A pull request does not
have to wait until all the work has been finalized
before merging it onto master.

3. Don’t keep working for too long on your own
local branch. Things can get out of sync quickly
if you do so.

4. GitHub does not magically solve merge conflicts
between branches. Diff tools are your friend.

5. Projects on GitHub do not automatically become
open source. GitHub repositories need to pick
a valid license before they are truly considered
open-source software—make your pick as you’re
setting up your repository.

6. Please play nice with others and have
meaningful ReadMe files and descriptive commit
messages. Emojis are more than welcome.

https://www.progress.com/

Progress.com 30

Progress Open Source on
GitHub
We at Progress love open source and love GitHub. You’ll find some very popular
GitHub repositories maintained by Progress—and we are happy to share. So
jump in, clone it, use it, fork it and contribute back.

• Kendo UI Core
• NativeScript®
• VS Code Extension for NativeScript
• JustCode™ Extensions
• JustDecompile™ Engine

Conclusion
This cheat sheet should help you get off the ground quickly with your projects.
So keep that terminal window open, refer to this list and get productive on your
GitHub projects. Happy coding!

Modern ASP.NET Tech Stack

https://www.progress.com/
https://github.com/telerik/kendo-ui-core
https://github.com/NativeScript/NativeScript
https://github.com/NativeScript/nativescript-vscode-extension
https://github.com/telerik/justcode-extensions
https://github.com/telerik/JustDecompileEngine

Progress.com 31

Let’s talk about ASP.NET—every .NET developer’s favorite web application stack.
With ASP.NET Core, the landscape for ASP.NET developers, is changing big time. On
one hand, you can still have the comforts of Visual Studio on Windows for ASP.NET
development; but on the other, ASP.NET is going places it has never gone before—
thanks in part to the new .NET Core.

The modern ASP.NET Core is lean, modular, open source and truly, completely
cross-platform. Not only does it run everywhere, but developers can build ASP.
NET applications on any platform. Below is a quick view of the moving pieces in
ASP.NET land. Want to learn more? Check out this webinar recording for a detailed
walkthrough on how to pick the right tech stack for modern ASP.NET.

[Image Courtesy – Microsoft]

Why JavaScript?
As the popular saying goes, JavaScript is the assembly language of the web and its
success is clearly influencing the ASP.NET stack. Why should you consider a Core JS
Framework in ASP.NET stack? Quite simply—reusability of established frameworks
and flexibility of client-side code.

https://www.progress.com/
http://www.asp.net/core
http://www.telerik.com/campaigns/devcraft/choosing-the-right-tech-stack

Progress.com 32

Interestingly, NodeJS is also making its presence felt in the ASP.NET stack. NodeJS
is the V8-based JavaScript runtime that is event driven and performance optimized
for non-blocking IO. This makes NodeJS a great lightweight web host, and ASP.NET
developers may want to keep their hosting options open, now that there’s Docker
support in ASP.NET. Visual Studio is a great IDE for NodeJS development and even if
not hosting, NodeJS plays home to much of the tooling that makes your life easier as
an ASP.NET developer.

Don’t want to write JavaScript? No problem–you can now leverage TypeScript in
ASP.NET. Too much in love with object-oriented concepts? Now you can do all of
that through TypeScript, a typed superset of JS—everything simply gets compiled
down to plain JavaScript. With the Angular 2.0 endorsement, TypeScript’s popularity
is on the upswing and it could be the perfect companion to your ASP.NET client-
side code. In fact, the bigger and more complicated your business logic, the brighter
TypeScript shines.

ASP.NET Yeoman Generator
Want to get started with the new ASP.NET Core? Irrespective of what development
platform you are one, one consistent CLI tool works everywhere—Yeoman.
This NodeJS-based tool gives you the perfect scaffolding option for starting your
ASP.NET application from Command Line. How? Simply use the popular ASP.NET
Yeoman Generator.

Popular Core JS frameworks give you a lot out of the box—easy data binding,
separation of concerns and well-oiled rendering engines. And all of this JS tooling
works right inside of Visual Studio for the best of both worlds. A few major JS
frameworks to consider are Angular, React, Aurelia, Backbone, Knockout, Durandal, etc.

https://www.progress.com/
https://nodejs.org/en/
http://www.typescriptlang.org/
http://yeoman.io/
https://www.npmjs.com/package/generator-aspnet#top
https://angularjs.org/
https://facebook.github.io/react/
http://aurelia.io/
http://backbonejs.org/
http://knockoutjs.com/
http://durandaljs.com/

Progress.com 33

Here are some steps in your beloved command line:
Make sure you have NodeJS installed. You could do brew install node on
MacOSX or choco install nodejs on Windows.

• Get Yeoman - npm install –g yo

• Get Bower – npm install –g bower. Bower will be used as a package
manager by the Yeoman generator to pull down some dependencies for the
scaffolded ASP.NET project.

• Get the ASP.NET Yeoman generator – npm install –g generator-aspnet

• Once all requirements are in place, you could simply type in – yo aspnet. This
powers up the Yeoman ASP.NET generator and provides you scaffolding
options, as below:

https://www.progress.com/
https://bower.io/

Progress.com 34

Once you pick a Web Application template, the ASP.NET Yeoman Generator will
scaffold an ASP.NET project in your chosen directory and Bower will pull down
dependencies. The structure and contents of the project are almost identical to the
same File-New Project experience one gets in Visual Studio.

Once your project has been scaffolded, you can jump into the project directory and
fire up the dotnet restore command to resolve NuGet references. And finally, dotnet
run would bootstrap and run your ASP.NET project, just as hitting F5 does in Visual
Studio. The big advantage of going the CLI and Yeoman route to start your ASP.NET
project—it works the exact same way in Windows, Linux and MacOSX.

Rapid Cross-Platform
Development with the
Angular 2 CLI

The origin of the quote “with great power comes great responsibility,” may be subject
to debate, but the truth behind it is universally accepted. As the power of the web
grows, so does its complexity and the opportunity for error.

Angular 2 represents a major step in the evolution of modern web front-end
frameworks, but it comes with a price. From TypeScript compilation to running
test scripts, bundling JavaScript, and following the Angular 2 Style Guide, “ng2
developers” are faced with myriad problems to solve and challenges to overcome.

https://www.progress.com/
https://angular.io/styleguide

Progress.com 35

Fortunately, there exists a way to simplify the process of building Angular 2
applications. Whether your goal is to stand up a rapid prototype or build an
enterprise-ready line of business applications that are continuously deployed to
the cloud, the Angular CLI is a tool that you don’t want to code without.

Getting Started: The
Prerequisites
Angular 2 supports cross-platform development with open-source tools.
Regardless of your development environment, a few simple steps will get you up
and running.

1. Install the Long Term Support (LTS) version of Node.js
2. Install your favorite open source IDE. A popular one is Visual Studio Code
3. Finally, go to a Node.js command line prompt and install the Angular-CLI:

npm install -g angular-cli

Now you’re ready to start your first project!

Creating your First Project
To start a new project, navigate to the parent folder and execute the following
command:

ng new my-first-app

Replace “my-first-app” with your project name. This single command executes
several tasks, including:

• Creates a local folder structure
• Generates an initial set of HTML pages, TypeScript source files, CSS styles

and tests
• Writes a package.json that has all the basic Angular 2 dependencies
• Installs all Node (npm) dependencies for you
• Sets up Karma for running unit tests with Jasmine
• Configures Protractor for running end-to-end (E2E) tests

https://www.progress.com/
https://cli.angular.io/

Progress.com 36

• Initializes a Git repository and commits the initial project
• Creates various files to help with building and generating your production app.

You now have everything you need to build and run the project! Make sure you
are in the root project directory and issue the following command:

ng serve

You will see something like the following image:

If your browser doesn’t open automatically, launch it and navigate to the address
on the “serving” line (i.e. port 4200). You should see the app. You can keep the
command running and as you make changes, the site will automatically reload to
reflect the changes.

Project Structure

There are a number of folders generated automatically. These include:

• Config: This folder contains configuration information for the deployment
and testing

• Dist: This folder is not included in source control by default and is the
distribution or generated build for your app

• e2e: This folder contains the scripts for end-to-end tests

• node_modules: This folder is not included in source control and is the
standard folder for npm packages

https://www.progress.com/

Progress.com 37

• public: This is a generic folder with an .npmignore file

• src: This folder contains all source assets, including code, stylesheets, images and
HTML markup, for your app

• tmp: Temporary folder

• typings: This folder contains TypeScript description files that provide live
documentation and auto-completion for libraries you use

There are several JavaScript and JSON files in the project’s root that you do not
have to edit directly and update via CLI commands.

Source Structure
The root of the src folder contains some important files:

• index.html is the main page loaded that bootstraps the entire application.

• main.ts is the bootstrap code. You should only have to edit this if you need to
add modules when the app is bootstrapped.

• system-config.ts configures dependencies for the app. Later, you will learn
how to use this with add third-party libraries.

• tsconfig.json contains the configuration for the TypeScript compiler.

• typings.d.ts is used for ambient type declarations that your application will
use.

Underneath the app folder you will find the templates, styles, code and test
specifications for the project. Based on the Angular 2 style guide, you will find
that components and services are grouped together with a common name for
the template (HTML), style (CSS), source code (TypeScript) and specification
(TypeScript). When you generate a new component, the CLI will create a folder
for that component.

https://www.progress.com/

Progress.com 38

A module id is used for the component’s definition that makes it easier to move
the component to a new location if you need to at a later time. Routes will also
generate subfolders.

You may notice an index.ts file exists in the root and is also generated when you
create new components. This file exports the types that you declare for that
component to make it easier to reference. For example, because the root index.ts
under the app folder has this line:

export * from ‘./my-first-app.component’;

You can reference the component using the /app path without specifying the file
name. This is demonstrated in the root main.ts file:

import { MyFirstAppAppComponent, environment } from ‘./app/’;

Components have a similar convention, allowing you to import them from the
component path instead of the filename.

Testing
The CLI automatically configures the Karma test runner to use Jasmine, includes
dependencies and generates basic tests for you to build upon. To see the tests in
action, simply type:

ng test

Ensure you are at the root of the project in a Node.js command line. This will
build the app, spin up a browser to host the tests and execute them for you. The
test harness runs continuously so you can update code and tests and have them
rerun automatically.

Note: On some Windows systems, the test command may fail due to filesystem
compatibility issues. If that’s the case, don’t despair! There is a simple
workaround. First, build the project:

https://www.progress.com/
http://jasmine.github.io/

Progress.com 39

ng build

Next, execute the test script with a special option to suppress the test build:

ng test --build:false

This should get you up and running with tests. With this approach, you will have
to rebuild manually to trigger a refresh of the tests. You can use ng serve in
another window to automatically rebuild and refresh.

Production
You may notice that the dist folder essentially copies all the compiled JavaScript
files from your application and includes the .map.js files to link the generated
JavaScript to its TypeScript source. Although this is perfect for testing and
debugging, it is common to bundle files for production to reduce overall load
time.

You can create a production build using this command:

ng build –prod

This will generate a production-ready build with bundled files. The command will
output the relative file sizes and how small they will be on servers that support
dynamic compression:

https://www.progress.com/

Progress.com 40

Easy Deployment
If you are using GitHub, you can optionally deploy code to GitHub pages for quick, easy hosting
of lightweight projects. Angular 2 supports publishing to the gh-pages branch automatically. To
learn how, read the excellent Quick Angular 2 Hosting with the Angular CLI and GitHub Pages
article by TJ VanToll.

Services
Services are typically reusable pieces of logic that don’t leverage templates or UI. Services
may perform calculations, manage state for the application or fetch data from web service end
points. To scaffold a new service, type:

ng g service GenerateNumbers

Where GenerateNumbers is the name of the service that you wish to generate. The CLI will
automatically parse the camel case and translate it to generate-numbers.service.ts. The
corresponding test includes spec in the filename. Per the style guide, the service is generated
with the name GenerateNumbersService so don’t add the Service suffix to your own names as
it will be provided for you.

The following code will generate a Fibonacci sequence of numbers.

import { Injectable } from ‘@angular/core’;

@Injectable()

export class GenerateNumbersService {

 private _x: number;

 private _next: number;

 constructor() {

 this._x = 1;

 this._next = 1;

 }

https://www.progress.com/
https://github.com/
https://pages.github.com/
http://developer.telerik.com/featured/quick-angular-2-hosting-angular-cli-github-pages/

Progress.com 41

 public fetch(): number {

 let current = this._x;

 let next = this._x + this._next;

 this._x = this._next;

 this._next = next;

 return current;

 }

}

A corresponding test looks like this:

describe(‘GenerateNumbers Service’, () => {

 beforeEachProviders(() => [GenerateNumbersService]);

 it(‘should generate a Fibonacci sequence’,

 inject([GenerateNumbersService], (service: GenerateNumbersService) => {

 expect(service).toBeTruthy();

 let expected = [1, 1, 2, 3, 5, 8];

 let actual = [];

 while (actual.length < expected.length) {

 actual.push(service.fetch());

 }

 for (let idx = 0; idx < expected.length; idx += 1) {

 expect(actual[idx]).toBe(expected[idx]);

 }

 }));

});

Pipes
Pipes are reusable formatters for data. They take in raw data and transform it to an
output as part of data-binding. To generate a pipe, use:

ng g pipe NumberToStyle

The template will generate the source and a test. The implementation takes in a source
value with optional arguments and returns the transformed value. This example will
translate a number to the style properties to set the width and height of an element
in pixels:

https://www.progress.com/

Progress.com 42

transform(value: any, args?: any): any {

 let numeric = Number(value);

 return ‘height: ‘ + numeric + ‘px; width: ‘ + numeric + ‘px;’;

}

Components
Components are reusable, self-contained units that include templates, styles and
related code. You generate a component like this:

ng g component Tile

This will create a folder based upon the component’s name and export the
component types via a generated index.ts file. Per the suggested naming
convention, this component will be called TileComponent.

It’s important to note that the CSS for the component is self-contained. You can
specify a generic div style in the CSS and it will only apply to div tags that are
present in the component’s template. Angular supports this by either using Shadow
DOM or, for browsers that don’t support mshadow DOM, by generating unique CSS
classes for the component automatically.

Routes
To generate a route, use:

ng g route AboutUs

This will generate a folder and corresponding component from the route, and add
the necessary decorators to configure the route.

You will notice in your top-level MyFirstAppAppComponent there is now a @Routes
definition:

@Routes([

 {path: ‘/AboutUs’, component: AboutUsComponent}

])

https://www.progress.com/
https://www.w3.org/TR/shadow-dom/
https://www.w3.org/TR/shadow-dom/

Progress.com 43

Note: Although the generator will add the appropriate import statement for
routes, you may need to manually configure support to embed links. Simply add
ROUTER_DIRECTIVES to the list of directives and ROUTER_PROVIDERS to the
list of providers, and then you can configure a link to the route like this:

<div><a [routerLink]=”[‘AboutUs’]”>About Us</div>

You can include this in the top-level component or may wish to build a specific
navigation component to generate the menu.

You may have noticed the route folder is prefixed to look like this: +AboutUs.
This indicates the route is “lazy-loaded,” which means the assets are not pulled
into the DOM until the user actually requests the route. This can help with
performance and reduce application overhead. You can specify a permanent
route that is pre-loaded when the application bootstraps by adding the --lazy
false option.

Third-Party Support
There are a few steps to integrate third-party libraries. First, install the third-party
package. For example, to install the showdown library that converts markdown to
HTML, execute this command:

npm i showdown –save

This will install the package and save it in the project configuration.

Next, configure the build to include the package. This step will vary depending
on how the package installs. For this example, add the following item to the
vendorNpmFiles array in angular-cli-build.js:

‘showdown/dist/showdown.js’

You can execute an ng build to verify the correct files get copied to a folder
called vendor under dist.

https://www.progress.com/
http://daringfireball.net/projects/markdown/

Progress.com 44

Next, edit system-config.ts to inform the TypeScript compiler and system.js
module loader how to reference the library. Again, this will vary from library to
library so check the vendor’s documentation for the appropriate configuration.
For this example, we add a map and a packages entry like this:

const map: any = {

 ‘showdown’:’vendor/showdown/dist’

};

const packages: any = {

 ‘showdown’: {

 main: ‘showdown.js’,

 format: ‘global’

 }

};

Optionally you can install the type information for the library or specify an
ambient declaration in the root typings.d.ts like this:

declare var showdown: any;

To use it in a component, import it:

import ‘showdown’;

Then use the library:

public text: string;

constructor() {

 let converter = new showdown.Converter();

 this.text=converter.makeHtml(‘#About Us\r\n## This works!’);

}

That’s it!

https://www.progress.com/

Progress.com 45

Conclusion
This section only scratched the surface of what the Angular CLI is capable of. Here are a few
tips to wrap-up with:

• If you want to serve the app and run continuous tests at the same time, there is no need
for both commands to build the app. Launch ng serve and then launch ng test --build false
separately.

• Scaffolding new files can throw the automated builds off. I recommend that you stop any
current processes first, scaffold your new items, then restart the processes and modify
them as needed.

• The Angular team updates the CLI often, so you should periodically issue the npm i
angular-cli -g command to keep it up to date.

• Anytime you change the configuration for the CLI itself, including angular-cli-build.js, you
should stop any running processes and restart them to pick up the changes. Only changes
underneath the src folder will be auto-detected.

Have fun rapidly building and deploying your Angular 2 apps!

> npm install —g angular—cli

> ng new my—dream—app

> cd my—dream—app

> ng serve

https://www.progress.com/

Progress.com 46

It’s a Wrap
CLI Tools have seen a huge resurgence among developers and hopefully this whitepaper did enough to
pique your interest. We talked about polishing up your Windows Command Line experience, the new .NET
CLI, the ubiquitous Git CLI and the fancy Angular 2 CLI.

With .NET and Angular 2 CLI tools, you should be well covered building desktop and web applications. When
you decide to go build mobile apps, your mobile strategy should guide the choice of technology stack—for
Native, Hybrid, Cross-Compiled or JS Native mobile apps. Whatever your choice, Telerik DevCraft gives you
the sharpest UI components for your apps—web, desktop or mobile. Starting a project with MVC? UI for ASP.
NET MVC enables you to build awesome apps for any browser and device in half the time.

In all, modern developers are embracing CLI tools for platform-agnostic flexibility and freedom of choice with
developer tools. Don’t get left behind, as development platforms are catering to this new mindset. Embrace
command line, build expertise in your chosen CLI tool and watch your productivity skyrocket. Happy coding!

Progress is trademark or registered trademark of Progress Software Corporation
and/or one of its subsidiaries or affiliates in the U.S. and/or other countries. Any
other trademarks contained herein are the property of their respective owners.

© 2016 Progress Software Corporation and/or its subsidiaries or affiliates.
All rights reserved.
Rev [YEAR]/[MONTH] | [WR NUMBER]

About Progress
Progress (NASDAQ: PRGS) is a global leader in application development, empowering the digital
transformation organizations need to create and sustain engaging user experiences in today’s evolving
marketplace. With offerings spanning web, mobile and data for on-premises and cloud environments,
Progress powers startups and industry titans worldwide, promoting success one customer at a time.
Learn about Progress at www.progress.com or 1-781-280-4000.

Worldwide Headquarters
Progress, 14 Oak Park, Bedford, MA 01730 USA Tel: +1 781 280-4000 Fax: +1 781 280-4095
On the Web at: www.progress.com
Find us on facebook.com/progresssw twitter.com/progresssw youtube.com/progresssw
For regional international office locations and contact information, please go to www.progress.com/worldwide

https://www.progress.com/
http://www.telerik.com/devcraft
http://www.telerik.com/aspnet-mvc
http://www.telerik.com/aspnet-mvc

