
WHITE PAPER

Accelerate Time to Market with Change
Impact Testing

Too many precious testing cycles are wasted in many organizations:

 • 30% of tests performed are ineffective

 • 30% of tests cover 65% of regression risks

 • 30% of tests are redundant

The IT application lifecycle is constantly accelerating to meet the need of continuous

and rapid evolution of information systems to correspond with business needs. This

acceleration is enhanced by the adoption of agile methods that “continuously” produce

new versions of applications.

Faced with this acceleration, it becomes imperative that teams focus their testing efforts

based on the impact of change. It is impossible to fully retest each application release

but quality must not be sacrificed, since the backlash from regression is immediate and

expensive.

Analysis of testing activities on the applications in our study revealed that the number 30 is

crucial to improving testing. This number is relevant when teams are required to:

 • Shorten the release cycle to accelerate responsiveness of information systems

 • Adopt agile methods

 • Increase the overall effectiveness of tests

This white paper explores these results to help you identify areas for improvement on tests

of your own projects and applications.

2

WHITE PAPERACCELERATE TIME TO MARKET WITH CHANGE IMPACT TESTING

Development of this Study

This study was conducted with data collected from more than
24 applications using Coverity Test Advisor – QA Edition
to improve their tests. The analyzed information is the result
of aggregated and anonymous data without reference to
specific applications. These applications were sourced from a
variety of business sectors: insurance, banking, manufacturing,
pharmaceuticals, software publishing, e-commerce, etc. Their
nature was also very diverse: web applications, client-rich
applications, SOA implementations, software customization,
etc. A variety of application sizes is well represented, from small
(80,000 lines of code) to very large (over 4.5 million lines of
code).

30% of Functional Tests Performed are Ineffective

On any given release, 30% of tests provide no real value!

What is an ineffective test?

In our methodology, a test is evaluated as ineffective if its
probability or its ability to detect a new anomaly is zero or very
low. This probability is estimated from the test footprint which
represents the test’s execution path within the application. If,
during its execution, a test does not touch any changed or added
element (code, etc.) in the tested application version as opposed
to the previous version, then it is categorized as ineffective for this
version.

 Test Footprint
 Also known as the test coverage, this is the set of executed
 instructions within the application code during a test run. In
 addition to the instructions, Coverity Test Advisor – QA Edition
 keeps track of the execution flow of each test (execution tree).

The illustration below describes this concept, where the
requirements and specifications will generate the execution of
non-relevant tests. At the same time, the test will miss risk areas
related to what has actually been modified by the development
team within the application.

Why Avoid Ineffective Testing?

The majority of tests in our surveyed applications were still
manual, so 30% represents many days of work and a significant
impact on the release cycle. As time constraints and deadlines
make it difficult to test everything, effort is devoted to these tests
at the expense of other relevant tests which would ensure the
quality expected by business stakeholders.

How to Avoid Ineffective Testing

Identifying ineffective tests before running them is not simple.
It is necessary to know how to relate application changes to the
relevant tests.

To do this, you must do three key things:

• Obtain a comprehensive view of the changes. This requires
rigorous use of version or configuration control, but can usually
only be taken advantage of during tests run by the developers
(i.e. unit testing).

• Acquire a functional vision of changes to assess their impact.
Changes are made in code by Development, but testing
activities are made by Quality Assurance (QA) and are based
on a functional vision. This requires strong cooperation
between developers and testers. In addition, both teams must
have the ability to share their different points of view about the
application. Release notes, where they exist, rarely satisfy this
requirement.

• Ensure good traceability between functional vision and
test scenarios to identify effective tests. Beyond merely
understanding the functional impacts of changes, it is
important to identify the relevant tests which cover these risks.
Rigorous use and excellent organization of the test repository
are essential.

If these problems appear difficult to overcome, another option is
possible: the one we used for this study.

How Coverity Test Advisor – QA Edition Identifies
Ineffective Tests

Coverity relies on technology that was created to solve this
problem. At each text execution, its footprint is automatically
recorded. The footprint is used to link the test to each application
instruction it calls. So, when a change is detected at the

3

WHITE PAPERACCELERATE TIME TO MARKET WITH CHANGE IMPACT TESTING

instruction level in a new version, the tests that should be run
based on change impact are immediately identified. As more tests
are run, their footprints are consolidated in a knowledge base.
Changes are also identified through a technique we developed
which “x-rays” applications.

 Identification of Changes
 Coverity Test Advisor – QA Edition detects all changes in the
 application without the need for source code or access to the
 version control system. The analysis is done at the binary code
 level and on all application resources (web, SQL, etc.).

30% of Tests Cover 65% of Regression Risks

On any given version, 30% of tests can cover the majority of
regression risks!

 Regression Risk
 A regression risk is related to changes made in the application
 code when adding new features or correcting an anomaly. These
 changes can impact the modified functional subset but very often
 generate side effects: malfunctions of other features that were
 not meant to change.

These edge effects of changes are difficult to determine, and
therefore require, for safety, running a large number of tests
to detect them. The cost of regression tests can comprise a
substantial portion of the overall test time and test cost of an
application. In addition, regression tests can cause a significant
drag on the release cycle which hinders the agility of the
information system.

Automated testing is one solution to try to reduce the test cost,
but the cost and maintenance may not be suitable for every QA
team. This is why it is so important to foster an effective approach
for accurate identification of effective testing based on change
impact.

Identifying tests that adequately cover risks requires collecting
accurate identification of all changes and the footprints of
previous tests. The tests which cover regression risks are those
whose imprint is impacted by at least one of the changes made.
Their results are not guaranteed because the code they run has
been changed since their last execution.

Once all these tests have been identified, in order to maximize
the effectiveness of campaigns, it is necessary to prioritize them.

Several possibilities are available:

• Use a functional view of the application to identify changes
in the most critical business areas and prioritize tests to be
executed.

• Select the tests which are most effective in risk coverage and
provide the same level of security. This will be those tests which
cover changes to the maximum extent, avoiding multiple tests
where only one may be sufficient.

This analysis, performed on the applications used in this study,
shows that it is possible to cover, on average, 65% of risks by
executing only 30% of regression tests. An iterative approach
is preferable: after performing a first series of tests, teams
must analyze the risks of excluded regressions and choose any
additional relevant tests.

 Business Vision
 Within the Coverity solution, this vision is provided through
 a configurable model which identifies the functional areas of the
 application to attribute a level of criticality to each functional
 area. Moreover, each area is linked to the application code that
 implements it. So, when modifying code, the functional area or
 areas affected are identified.

How Coverity Test Advisor – QA Edition Helps Define
an Effective Strategy

The optimization of a test campaign is done via a wizard
that allows the manipulation of all the data collected in the
application’s knowledge base: test footprints, changes in each
version and the functional model of application. The selected
tests are then exported to the testing tools such as HP ALM/
HP Quality Center, Selenium and many others to initialize
campaigns.

Change impact testing is particularly applicable to regression
testing.

30% of Tests are Redundant

Given the set of all tests on a development version at deployment,
30% of tests are not complementary but are actually redundant!

What are Redundant Tests?

Throughout the lifecycle of a release, the tests undertaken are
very different. Whether unit testing, integration testing, system

4

WHITE PAPERACCELERATE TIME TO MARKET WITH CHANGE IMPACT TESTING

testing, acceptance testing or functional testing; these tests are run
by different people: developers, integrators, functional testers and
end-users utilizing both manual and automated systems from a
GUI or running scripts.

All these differences mean there is rarely an aggregate view of all
tests performed, even in agile teams where the testers are close to
the developers. It is impossible to really know what is tested or
what is not tested.

 The Swiss Cheese Metaphor
 The image below perfectly represents the idea of an aggregate
 view of all test activities on a given application version. Each
 type of test performed (unit, integration, system, acceptance, etc.)
 is represented as a slice of cheese. Untested application areas are
 represented by holes in the slices.

 In the lifecycle of a version, slices (i.e. tests) are stacked, but
 overlapping holes aligned in all slices are to be avoided. These
 represent areas of the application never tested by any type of test.
 Any minor change in these areas poses a regression risk which is
 never covered.

By taking footprints of all tests during their execution and by
aggregating these footprints, we identify what is tested – and is
not tested – overall in the application.

When changes made in the current version of the application are
added to this representation, “test holes” can quickly be identified.

The 30% of tests which are redundant are represented by the
“over-tested” area. These tests minimize the risks in these areas,
but at the expense of untested areas. To optimize a test strategy, it
is worthwhile to rely again on a functional vision to identify what
features are untested in the “test holes,” and to prioritize actions
based on the associated business risks.

Redundant testing is not a problem in and of itself, but exposing
it is an important step to increase test effectiveness.

Conclusion

Most customers whose applications are referenced in this study
are faced with a major challenge: to increase the agility of their
information systems, or of their products in the case of software
vendors. Following this agility is the ability to deliver more
frequent releases to respond quickly to changing demands. All
this without losing control of quality, because otherwise versions
keep coming in a vicious cycle to resolve ongoing problems found
in production.

On its own, the traditional approach taken from requirements
and specifications is limiting in this situation, and does not
provide the necessary effectiveness. Automation is a perfect
solution in theory but in practice, it is not always so rosy.

Several options exist:

• Break the developer/tester silos to improve the capacity for
dialogue and collaboration and to better target tests.

• Gain an overview of all tests performed on the release cycle. It
is unthinkable not to rely on all tests performed for a real view
of risk coverage.

5

WHITE PAPERACCELERATE TIME TO MARKET WITH CHANGE IMPACT TESTING

• Mix these approaches with pragmatism to confront
requirements-driven testing and white-box testing and make
use of data to boost testing effectiveness.

Appendix: Overview of Techniques and Technology
Used

This study is based on the analysis of anonymous data generated
by companies utilizing Coverity Test Advisor – QA Edition.

Note: For the purpose of this study, we refer to the term “version”
to mean any build that was created manually or by automated
tools, whether an official release candidate or not.

Analysis of Each Version or Build

To analyze the relevance of tests, each version is automatically
x-rayed to detect the changes introduced (see Figure 1) and
evaluate its impact in functional terms (see Figure 2).

Fig 1: The proportion of modified elements of the application (code,
etc.) in this version versus the overall application.

Fig 2: Identification of functional subsystems impacted by the changes
made (% change).

Test Footprints

Tests captured by Coverity Test Advisor – QA Edition could
be manual or automated, unit, integration or functional. The
footprint of a test is the set of all instructions executed in the
application from actions taken during the test. These include
the call trees and executed instructions in the application
which respond to the user’s action. The footprint is collected
automatically through an agent that records the operation of
the application under test. Plug-ins for testing tools make this
operation transparent to testers.

Fig 3: Test footprint collection

As tests are performed, their footprints are aggregated to identify
tested and non-tested areas. This information can be viewed from
several angles in order to best optimize tests: aggregate view (Fig
4), functionalist views (Figures 5 and 6).

Fig 4: Risk identification through the correlation of changes and test
footprints.

WHITE PAPER

6

For More Information

www.coverity.com
Email: info@coverity.com

U.S. Sales: (800) 873-8193

International Sales: +1 (415) 321-5237

Email: sales@coverity.com

Coverity Inc. Headquarters

185 Berry Street, Suite 6500

San Francisco, CA 94107 USA

© 2014 Coverity, Inc. All rights reserved. Coverity, the Coverity logo and Coverity SAVE are registered trademarks of Coverity, Inc. in the U.S.
and other countries. All other company and product names are the property of their respective owners.

ACCELERATE TIME TO MARKET WITH CHANGE IMPACT TESTING

Fig 5: Identification of untested or poorly tested areas. Here the general
coverage of functional subsets by testing. In this example the Scheduler
subset has not been tested.

Fig 6: Identification of untested changes. Analysis of changes is crossed
with test coverage. In this example, changes in the Notifications or
Users subsets have not been tested.

201406-03

